

Nizamettin Gok and Nitin Khanna

Building Hybrid Android Apps
with Java and JavaScript

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Building Hybrid Android Apps with Java and JavaScript
by Nizamettin Gok and Nitin Khanna

Copyright © 2013 Nizamettin Gok and Nitin Khanna. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Meghan Blanchette
Production Editor: Melanie Yarbrough
Proofreader: Linley Dolby

Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

July 2013: First Edition

Revision History for the First Edition:

2013-07-19: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449361914 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Building Hybrid Android Apps with Java and JavaScript, the image of a pacuma toadfish, and
related trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36191-4

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449361914

I would like to dedicate this publication to my sons, Akira and Hiroki, and my wife, Yukiyo,
for their support. I wouldn’t be able to complete this without all of you.

— Nizamettin Gok

I would like to dedicate this book to my wife and parents; without their support, this book
would not have been possible.

— Nitin Khanna

Table of Contents

Preface. ix

1. What Is Android?. 1
Android Applications 2
What Is a Hybrid Application? 2
Categories of Applications 2
Key Characteristics of Hybrid Apps 3
Why Developing Hybrid Apps Makes Sense 5
Hybrid Application Architecture 7
How Do Hybrid Apps Work on the Android Platform? 9

2. Setting Up Your Android Development Environment. 11
Installing Eclipse on Mac OS X 12
Installing Android Development Tools 12
Creating Your First Hybrid Android Project Using Eclipse IDE 13
Android Development Using the Command Line 16

Setting PATH Environment Variables 16
What Is ADB (Android Debug Bridge)? 17

Connecting an Android Device to the Development Host 18
Connecting to an Android Device Over WiFi 18

Using Apache Ant to Automate Building Android Applications 19
Understanding the Android Build Process 22

Resource Precompilation 22
Service Interface Precompilation 23
Java Compilation 23
DEX Generation 23
Resource Packaging 24
Creation of the APK File 24
Alignment 24

CSS Preprocessors 24

v

Installing SASS 26
Integrating SASS into the Android Command-Line Build System 27

JSLint Framework and Strict Coding Conventions 28
Process HTML Templates 30
Minifying CSS and JavaScript Files Using YUI Compressor 32
Using Safari and Chrome Browsers for Faster JavaScript Debugging and UI

Changes 33

3. Android Fundamentals. 35
Android Application Architecture 35
Key Android Components 35

Dalvik Virtual Machine (DVM) 36
View 36
Activity 36
Fragment 36
Intent 37
Services 37
Content Providers 37
Broadcast Receiver 37

Security Model in Android 38
Resources 38

String Resources 40
Layout Resources 40

Compiled and Uncompiled Android Resources 41
Assets 41
Structure of an Android App 41
Application Manifest 43

Application Package Name 45
Application 46

Activity 48
Intents 52
Intent Resolution 53
Intent Filter 53
Services 54
Broadcast Receiver 54
Specifying Compatible Device Configuration 55
Declaring Needed Device Features 55
Permissions 56
SDK Version 56
Hands-on Coding: Hybrid Hello World! Application 57

4. WebView, WebKit, and WebSettings. 61

vi | Table of Contents

The WebView as a Web Browser 61
So What Is WebKit? 62
Requesting Internet Permission from Android Manifest 62
Instantiating and Accessing the WebView Control 63
Loading a Web Page 63
Loading HTML into WebView 64
WebViewClient 65

WebChromeClient 66
Loading Local Files into the WebView 66
Load Flash Files into the WebView 67
Reading Files from the res/raw Directory 67
Triggering JavaScript Functions from the Java Layer 68
Opening a WebView in Fullscreen Mode 69
Enabling a Resize Event in JavaScript While Your Application Is Fullscreen 69
Binding Java Objects to WebView Using the addJavaScriptInterface() Method 70

@JavaScriptInterface Annotations 71
Security Considerations for Hybrid Applications 72
HttpOnly Cookies and the Secure Flag 73
Domain Whitelisting 73
Configuring WebView Settings with WebSettings 74
Preventing Local Files from Being Loaded in the WebView 74
Enabling JavaScript 75
Setting Default Font Size 76
Zoom Controls 76
Hardware Acceleration 76

5. Inter-workings of the JavaScript and Java Layers. 79
Architecture of a Hybrid Application 79
Calling Java Methods from JavaScript 81
Synchronous APIs 82
Asynchronous APIs 83
Calling JavaScript Methods from Java 83
Routing Data to the Correct JavaScript Receiver 84
Deferred Object Pattern 84
Register Success Callback Using deferred.done() 85
Register Failure Callback Using deferred.fail() 85
Register Progress Callback Using deferred.progress() 85
Simpler Callback registration with .then() 85
Synchronizing Multiple Asynchronous Events with $.when() 86
Resolve a Deferred Object 86
Reject a Deferred Object 87
Use of Promise 87

Table of Contents | vii

Use of deferred.progress() 88
Cache Manager for Handling Multiple Deferred Objects 90
Thread Safety 92

6. HTML Architecture for Hybrid Applications. 93
Architecture of a Web Application 93
Single Page Applications (SPA) 94
Key Design Considerations for Single Page Applications 95
The Libraries and Frameworks for Your Hybrid Apps 95
Backbone.js for MVC Framework 95
Underscore.js for Utility Support 96
iScroll.js for scrolling 96
iScroll Caveats 96
jQuery.js for JavaScript application 97

Preload Images Within the CSS Files 97
CSS Reset Avoids Browser Inconsistencies 98
Your Home index.html 98
Viewport Meta Tag 100
Viewport Width 100
Viewport Scaling with the Content Attribute 101
Responsive Design and Media Queries 101
EM or Percent (%) unit for scalable interface 103
CSS3 Introduces rem Unit 104
Opacity or RGBA: What Is the Difference? 104
Event Pooling 105

7. CSS, DOM, and JavaScript: Optimization Tips and Useful Snippets. 107

8. Publishing Apps for Android. 113
Digitally Signing Applications 116
Protecting Your Application with ProGuard 117
Google Play 117
Registering as a Publisher 117
Developer Console 121
Uploading an Application 122
Amazon App Store 127
Self-Signing and the Amazon App Store 127
Amazon App Store Sign Up Process 128
Uploading an Application 133
Understanding the Application Approval Process 140

viii | Table of Contents

Preface

This book is intended for an audience interested in building powerful HTML applica‐
tions by bridging the gap between JavaScript and the device’s native APIs. This book
lays down a solid foundation for the architectural aspects of hybrid applications on
Android, covering internals of WebKit and Android as needed. As part of this book, we
have not only introduced some of the key web technologies used for building hybrid
applications, but we have also focused on how they can be integrated into the Android
build system. We will also be discussing some important aspects of hybrid applications
from a security perspective.

To tie it all together, we are also introducing the Karura Framework. The purpose of
this framework is two pronged. First, we want to simplify the overall process of inte‐
grating native components in hybrid applications. Second, we want to present a lean
framework that is easy to read and write for. The framework itself is plug-in–based and
can be extended and cut down based on the requirements of individual applications.
We have released the framework under a dual license scheme. You can easily import
Karura Framework into your project using Eclipse or the command line and start de‐
veloping for it.

To reiterate, this book has been written with the purpose of allowing our readers to
understand the following:

• What is a hybrid application?
• What goes under the hood in Android in the case of hybrid applications?
• What does the architecture of a hybrid application look like?
• What are some key tools and technologies for building next generation hybrid apps?
• What are the security considerations for hybrid applications?
• How do I publish an application in Google Play and Amazon App Store?

ix

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book’s accompanying files, libraries, and required frameworks (such as Karura)
are hosted on GitHub. You can view them online or download them from http://
github.com/karuradev.

We will continue to maintain the Karura Framework and will provide various examples
of Hybrid Apps on GitHub as well. Should you have any questions or inquires about
Karura Framework, please contact us at karuradev@gmail.com.

This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in this book in your programs and documentation. You
do not need to contact us for permission unless you’re reproducing a significant portion
of the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples from
O’Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount

x | Preface

http://github.com/karuradev
http://github.com/karuradev
mailto:karuradev@gmail.com

of example code from this book into your product’s documentation does require per‐
mission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Building Hybrid Android Apps with Java
and JavaScript by Nizamettin Gok and Nitin Khanna (O’Reilly). Copyright 2013 Niza‐
mettin Gok and Nitin Khanna, 978-1-449-36191-4.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers expert content in both
book and video form from the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/hybrid-android-apps-java-
javascript.

Preface | xi

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://oreil.ly/hybrid-android-apps-java-javascript
http://oreil.ly/hybrid-android-apps-java-javascript

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Nizamettin Gok
I would like to thank my colleague Sriraman Krishnamoorthy for his valuable input in
this book. He is an excellent architect in the mobile space. I also would like to thank the
passionate and talented technical reviewer Mauvis Ledford who helped review and cor‐
rect this book.

It has been an amazing journey for me to complete this book. During this journey, I
quickly realized that writing a book is not only a way of teaching someone, but also
learning the correctness of what I have learned. For this reason, it is my ultimate pleasure
to give back to the developer community.

Nitin Khanna
We would like to thank Mavious Ledford for reviewing the book. We would also like to
thank our families, without their support and patience this book would not have been
possible.

About the Technical Reviewer
Mauvis Ledford is a full-stack developer, speaker, and technical lead specializing in
front-end technologies (CSS3, JavaScript, and HTML5) and cloud computing. He has
worked and consulted for start-ups and companies large and small from Disney Mobile
to Skype. He currently runs his own software company Brainswap focused on produc‐
tivity applications.

xii | Preface

mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.brainswap.me

CHAPTER 1

What Is Android?

Android is many things, and the answer depends on who you ask. While for some it is
an operating system optimized for mobile devices, others talk of it as an open source
middleware and an application framework that allows developers to build applications
primarily using the Java programming language.

What is Android? As a software stack, Android is an operating system from Google.
Android is free and open source. Android is based on a mobile-centric version of the
Linux operation system, at its core. As an application framework, Android packs a
comprehensive set of advanced features for developers to build applications with rich
user experiences and complex logic. As a middleware, Android offers a number of li‐
braries to help developers build their next big ideas with ease. The Android Software
Development Kit from Google contains all necessary tools to allow developers to code,
develop, and test their applications on Android devices.

Because Android is open, there are a number of off-standard distributions of Android
from OEMs like Amazon, Samsung, Motorola, and HTC to name a few. These distri‐
butions of Android have been heavily customized to support device profiles or brand-
specific user experiences. For good or bad, this has led to huge fragmentation among
Android devices. Hence, if you ask the IT department of any organization, Android and
devices running Android pose a huge challenge when trying to provide users with uni‐
form access to enterprise assets.

Android has been quite popular since its launch, and the fact that it is open source and
enjoys a low entry barrier has led to its usage on platforms beyond mobile devices,
including music players, ebook readers, televisions, wearable gadgets such as Google
Glass or Android Watches, and so on. Because Android development is based around
use of Java as a primary development environment, a huge pool of open source/COTS
libraries are available to help you accelerate your application development process. This
has also led to a huge surge in the need for Android developers. In summary, it is a good
platform to learn in the short and long run.

1

Android Applications
An Android application is a mobile application developed using the Android SDK and
targeted toward devices running the Android operating system or runtime (in case of
Blackberry devices).

So now that we have some idea about Android and the fact that we are all motivated to
build our next killer application for Android, one obvious question looms: In what
language should you develop your application? What technologies would you have to
learn and master for you to realize your next big idea: Java or something else? Contrary
to popular belief, Java is not the only language you can use to develop software for
Android. There are a number of tools available today to develop Android apps in C/C
++, Python, Ruby, and HTML/JavaScript.

In this book, we will focus on a special category of apps, known as the hybrid applications
using a mix of native Java and HTML/JavaScript.

In the rest of this chapter, we will lay down the definition of a hybrid application, and
discuss the key architecture and runtime. We will also discuss at a very high level the
APIs available in Android that can be used for building these applications.

What Is a Hybrid Application?
“Hybrid” applications are a special category of web applications that extend the web-
based application environment through their use of native platform APIs available on
a given device. The hybrid application design pattern is equally applicable to both mobile
and desktop environments. For the scope of this book, we will focus on hybrid appli‐
cations targeted toward the Android platform, however, most of the design patterns are
also applicable to other platforms, including iOS and Windows Phone.

Categories of Applications
In general, applications can be broadly classified into four distinct categories: native
apps, generic mobile apps, dedicated web apps, and hybrid apps. Let’s look at each of
these categories.

Native apps are the most common applications that you can find in app stores (appli‐
cation marketplaces) today. Native applications are usually developed using higher level
programming languages, such as Java for Android, Objective-C for iOS, or C# for Win‐
dows Phone. The native APIs are provided to the developer as part of the platform SDK.
The platform APIs are usually designed to provide native apps optimal access to hard‐
ware capabilities, such as the device’s camera and Bluetooth stack. In addition, users
may be able use these apps without an Internet connection. On the downside, since
platform SDKs are based around different programming languages, developers need

2 | Chapter 1: What Is Android?

multiple implementations of the same application for them to be able to achieve any
reasonable market reach. The development cycle is often tedious, costly, and involves
a lot duplicate effort. Native apps are useful when performance optimization is very
critical—for example, in simulations and high-end interactive graphics. Building native
apps requires highly targeted platform-specific skills and a steeper learning curve, as
developers have to deal with the nitty-gritty of the platform.

Generic mobile web apps are websites designed for web-enabled mobile phones. They
usually look alike on all platforms and do not leverage platform APIs to customize the
user experience for users. Visit Wikipedia mobile app for this example.

Dedicated web apps are web applications that have been tailored for a specific platform
like Android, iOS, or Blackberry. A good example for this is LinkedIn web app.

Mobile web apps can be built using common server-side technologies such as NodeJS,
PHP, and Ruby on Rails. Access to the app is usually gained by typing the URL address
in the mobile browser. The assets and resources, including but not restricted to images,
audio, video, CSS, and so on, for these apps reside on the web server. One potential
downside of this approach is that downloading these assets onto the device may not
only increase the cost associated with data usage but may also affect user experience due
to latencies involved in such networks.

HTML5 does offer an application cache mechanism that allows apps
to cache the assets to device storage for the future use.

Hybrid apps, like native apps, run within a native process environment on the device.
These apps typically wrap the HTML content within a web browser control in full screen
mode, without a visible address bar or other browser chrome controls. Hybrid apps
leverage the device’s browser engine (the most common being WebKit) to render web
content and process JavaScript code. Hybrid apps use a web-to-native abstraction layer
(also known as bridge layer) that allows JavaScript to access many device-specific ca‐
pabilities and native APIs that are not generally accessible from the mobile web browser
alone.

Key Characteristics of Hybrid Apps
Unlike web applications or mobile websites, which the user can access by browsing to
the URL, hybrid apps are typically installed through an app store and are available
through the platform application launcher. This means users have to follow the same
procedure to install hybrid application, as they would have for native applications. The
platform will ask users to grant device access permission upon installation.

Key Characteristics of Hybrid Apps | 3

http://goo.gl/AZ5t3
http://goo.gl/j3HzI

At this point, we would like to cite a clear differentiation between a
category of apps that we refer to as bookmark web apps, which are like
hybrid apps in the sense that they are also downloaded from an app
store, but are distinct in the sense that these apps are nothing more
than a redirector or a shortcut for a website on the device. These apps
usually terminate upon launching a browser session that redirects the
user to the website for which this app was created.

Hybrid apps play a critical role in bridging the gap between the capabilities of the web
browser and the that of the device, allowing developers to build applications that can
benefit from the best of both worlds.

Hybrid apps are primarily written using a combination of HTML5, CSS, JavaScript, and
platform-specific SDKs, such as Java for Android, Objective-C for iOS, or C# for Win‐
dows Phone.

A hybrid app package generally includes a bundled copy of all necessary web resources
(i.e., HTML, JavaScript, CSS, and images) so that the app instantly loads like a native
app, without waiting for a web server to deliver everything. Depending upon the com‐
plexity and size of the resources, some variants of hybrid apps may download device-
specific content upon first launch. This allows developers to customize the application
user experience on a per-device basis.

With the advancement in mobile operating systems and JavaScript processing engines,
a hybrid app running on reasonably modern mobile devices can deliver highly efficient
user experiences using bare HTML, CSS, and JavaScript for the UI layer instead of the
devices’ native platform programming language.

The hybrid approach provides developers with multiple advantages:

• Developers can update/rollback content and/or the application itself without re‐
quiring users to upgrade their application via a native app store. This is a huge
advantage for content-oriented mobile apps.

• Developers can target generic UIs across multiple platforms, concentrating on the
business logic and not the intricacies of each individual platforms’ UI SDK. This is
a huge win because in our experience, this saves developers close to 50% of devel‐
opment time through the lifetime of an application.

There is a lot value in developing platform-specific UIs, and you may
eventually want to do it once your application usage crosses a certain
threshold. Having said that, it should be relatively straightforward in
the case of hybrid applications using CSS.

4 | Chapter 1: What Is Android?

Why Developing Hybrid Apps Makes Sense
Hybrid apps have the unique ability of reaping all the benefits of traditional web appli‐
cations without many of its limitations.

The benefits of hybrid apps compared to native include:
Faster time to market

Building a hybrid application is typically faster and requires highly reusable stand‐
ards skills. It does not involve a tedious learning curve when compared to native
programming languages.

Inexpensive cross-platform development cycle
Hybrid apps have cross-platform compatibility, reducing the footprint of native
code needed, resulting in more reusable HTML5, CSS, and JavaScript that can be
shared and deployed across platforms with minimal adjustment. This is primarily
because WebKit is the platform of choice across all major mobile phone OSes today.
Cross-platform development cycles also help keep the cost associated with devel‐
opment and testing under control. The reusability of HTML code allows developers
to achieve a “develop once, deploy many” architecture. Native apps on the other
hand would require developers to perform full-feature test rounds for platforms on
which the application is being developed.

Abundant human resources
Hybrid apps are built with web technologies, which means that there are many web
developers who have the base skill set to build mobile apps.

Cost of maintenance
Maintenance costs are usually lower because one does not need to rewrite (port)
all application code to the native language of each device platform. Further, since
the skill set to develop hybrid apps is readily available, scaling of a development
team is also a nonissue.

Approval process
Most of the app stores do have an approval process for which each app has to qualify
before it can be made available through the sales channels of that app store. Because
hybrid apps can be updated outside the bounds of an app store, you can typically
get away with one submission to the app store. Once you are approved, you can
push subsequent updates independently through your server if you like. A key point
to note however, is that a fresh submission of the application would be required
every time you make changes in the native code associated with the hybrid app.

Hybrid apps are the future
Looking toward the future and upcoming advancements in mobile OS technologies,
one can easily argue that hybrid apps are the future of development. Windows
Phone 8, Google announcements to eventually merge Chromium OS and Android,

Why Developing Hybrid Apps Makes Sense | 5

Tizen OS, and Firefox all hint toward a hybrid future, not too far away, and hence,
building and deploying hybrid apps is strategically a right thing to do.

The benefits of the hybrid apps compared to mobile web include:
Access to device capabilities

As mentioned in the introduction paragraph, hybrid apps offer the unique oppor‐
tunity to reap all the benefits of traditional web applications without many of their
limitations. Hybrid apps can extend the JavaScript environment to access the native
APIs and capabilities of the platform that are not available through the generic web
browser environment otherwise, for example, true offline storage, as well as access
to contacts and other media on the device.

Unavailable new platform features
Hybrid apps can take advantage of the new features that are available in the new
SDKs. However, you will have to develop and expose that native layer using plug-
ins or a framework, which is usually the boilerplate code in most cases.

Distribution through app stores
Hybrid apps are distributed through app stores just as native apps are. You discover,
download, and install them, as you would a native application. Therefore as a de‐
veloper, you can leverage an existing well-established channel for content, app dis‐
covery, and monetization.

Offline access and execution
Hybrid apps, like native apps, can be run locally on the device when the device is
offline—i.e., it is not connected to any network.

The possible drawbacks of hybrid apps as compared to native apps include:
Performance

You may experience potential performance issues because JavaScript is fundamen‐
tally single-threaded, which means that only one operation can be performed at a
time. However, if done right, you can come up with a solution wherein you can
offload background tasks to a native thread, which would execute in parallel while
your app is busy performing UI operations. The native thread would then notify
the JavaScript of the events and task completions/failures.

Differences in cross-platforms
WebKit is not equally maintained in all mobile platforms, which means that there
might be indistinct differences between renderings and platform-specific features
to watch out for, though one could arguably say it is a better scenario than rewriting
all code from scratch. Further, this is such a well-understood topic that often you
would find material describing ways to identify and mitigate these UI experience
risks.

6 | Chapter 1: What Is Android?

Unavailable advanced features
There might be advanced features that cannot always be easily implemented on the
hybrid layer—for example, OpenGL-based rendering—however, the set of features
is rapidly shrinking with companies like Microsoft, Google, and Mozilla introduc‐
ing a bunch of new standards aimed at bridging this gap.

Inconsistent user interfaces
Platform-specific UIs’ look and feel might be seriously difficult to mimic using
HTML, CSS, and JavaScript.

The possible drawbacks to the hybrid apps compared to mobile web include:
Not accessible via website

A user is required to find your application in a native app store and cannot access
it via a traditional web browser unless you’ve made one available.

We believe that each of the solution strategies discussed in this chap‐
ter have both advantages and disadvantages respectively. Choosing the
right technology for building a mobile app can be challenging. One
should consider the implementation choices within the purview of the
targeted mobile ecosystem and the application specifications and com‐
plexity.

Hybrid Application Architecture
Hybrid application architecture, shown in Figure 1-1, is a very high level view and will
be described in a more detail later in this book. In addition, we will be covering a new
hybrid application framework, which we have developed to substantiate your under‐
standing of the concepts described in this book.

Hybrid Application Architecture | 7

Figure 1-1. Hybrid application architecture

Key highlights of the architecture include:

• Application UI and business logic reside within a context of a headless web browser
that is fully contained within your application.

• For features that are available within the web browser, the user interacts with the
browser and the browser interacts with the native platform environment.

• Resources and assets are available locally or can be downloaded from the Web.
• For the platform features that are not natively available to apps through the standard

JavaScript environment; custom extensions and plug-ins can be developed. These
plug-ins act as a bridge, if you will, diminishing the gaps between the native and
web environments.

8 | Chapter 1: What Is Android?

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

In Chapters 5 and 6, we will address this topic in more detail.

How Do Hybrid Apps Work on the Android Platform?
Android’s implementation of a WebBrowser Control is called a WebView. WebView
uses the open source WebKit rendering engine to display and execute web content. The
native Java APIs feature a number of convenience functions that can allow developers
to take control of the user experience from native code. For example, they allow devel‐
opers to navigate forward and backward through a history, zoom in and out, perform
text searches, and more.

One of the functions exposed as part of the native WebView API is WebView.addJavas
criptInterface(Object object, String name). This method injects the supplied
Java object into the WebView. The injected Java object can be accessed via the JavaScript
as a global variable with the same name supplied in the Java function. This bridge func‐
tionality opens a communication channel between the Java and JavaScript layers. Hybrid
apps take advantage of this abstraction layer that exposes the device capabilities to the
UI layer.

This underused and powerful technique can come in handy when building hybrid apps,
and we will show you how to take advantage of this feature in later chapters.

While we are on this topic, it is important to understand that the WebView model for
extending Java into JavaScript is sort of nonlinear in nature. While JavaScript can call
Java methods directly, the reverse is not true—i.e., functional callbacks are not possible
from Java to the JavaScript environment. For calling methods into JavaScript from Java,
WebView.loadData() and WebView.loadUrl() methods can be used.

One of the reasons for this skewed architecture is to support the fact that JavaScript runs
in a single-threaded environment. Direct callbacks into the JavaScript environment
could expose the JavaScript engine to multiple threads, which would be quite difficult
to manage. Hence, by following a model wherein the native environment requests the
WebView to load a URL or data, whenever it wants to call a function into the JavaScript,
we emulate a message queue dispatcher, wherein each request to load data or a URL
dispatches a new request to be executed in the order it was received.

How Do Hybrid Apps Work on the Android Platform? | 9

CHAPTER 2

Setting Up Your Android Development
Environment

Hybrid applications involve a number of complementary technologies that are not na‐
tive to the Android development environment and SDK. In this chapter, we will intro‐
duce you to some of the key technologies that will play a crucial role in helping us build
our first hybrid Android app.

Most of the concepts described in this chapter are utilitarian in nature. These concepts
will be used throughout the remainder of the book, so please go over them in detail.

The topics in this chapter range from setting up your development environment to the
use of the various HTML, CSS, and JavaScript tools needed for an efficient development
workflow. We will also cover some key design and implementation strategies related to
mobile web application development. In addition to this, we will showcase some utility
scripts that augment the Android build system to simplify day-to-day tasks.

In this section, we will describe how to set up the development environment for your
hybrid Android application. For the scope of this book, we will use Eclipse as our pri‐
mary development environment. Eclipse is a popular open source IDE that supports
multiple languages and an extensible plug-in based architecture. The Android tool chain
available from Google features plug-ins that can be integrated into the Eclipse workspace
to streamline your Android application development experience.

Eclipse is not required for Android development but is a handy tool
with a lot of features, as we’ll describe later.

11

For installation, we will use an OS X based workstation, but any Unix-based system
should work similarly. If you are on a Windows platform, we recommend using Cygwin
so that you have an Unix-like shell.

Details about setting up the development environment can be found at the Android
developer website along with many other online tutorials. Although there are many
resources and tutorials available on this topic, we recommend Android Apps with
Eclipse by Onur Cinar (Apress) for some nifty tips about Eclipse.

As of this writing, Google has introduced a new IntelliJ IDEA based
IDE and tools for Android development. This IDE is still in its early
beta stage and not very stable. We will update the chapters of the book
and provide supplementary material on the website for using An‐
droid Studio for hybrid application development. Android Studio can
be downloaded from the Android Studio website.

Before anything else, you will need the Android SDK from Google’s Android SDK web‐
site. Download the latest Android SDK and unpack the ZIP file into a desired location.

Installing Eclipse on Mac OS X
Eclipse for Mac is available as a GZIP package. Once you download Eclipse, it will be
available in your Downloads folder. Depending upon the version of OS X you are using,
you may have to double-click on the downloaded file to extract Eclipse. On newer OS
X versions, Eclipse might already be extracted in the Downloads folder.

Installing Android Development Tools
Android Development Tools (ADT) comprise a set of open source development tools,
available from Google. ADT is packaged as a set of Eclipse plug-ins, which extend the
capabilities of the development environment, allowing developers to do the following:

• Create new projects
• Visually design UI
• Debug and unit test applications
• Provide assisted code development

You can find more information about ADT at the Android ADT plug-in website.

To install the ADT plug-in, select the Help→Install New Software menu option in
Eclipse. This will display the Install dialog. Click the Add button, which will open the
Add Repository dialog. In the Name box, type Google ADT, and in the Location box,

12 | Chapter 2: Setting Up Your Android Development Environment

http://goo.gl/8yu4c
http://goo.gl/8yu4c
http://goo.gl/yqtsC
http://goo.gl/KWUzQ
http://goo.gl/KWUzQ
http://goo.gl/nlm5x

type the following URL https://dl-ssl.google.com/android/eclipse/, and click
OK. The Add Repository dialog will now close, and you will be back to the Install dialog.
Now select the Google ADT repository, and select Developer Tools to install the ADT
plug-ins.

As of this writing, Google has also released a new integrated version
of Eclipse and Android Development Tools called the ADT Bundle.
Details for ADT Bundle can be found at the Android ADT Bundle
website. This bundle includes Eclipse, along with Android plug-ins and
the SDK preconfigured for development.

Creating Your First Hybrid Android Project Using
Eclipse IDE
To create a new Android project in Eclipse, go to File→New→Android Application
Project. In the Project Creation form, the Application Name is the one that will appear
in the Play Store, as well as in the Manage Applications (Apps) list. The Project Name
is typically the same as the Application Name but should be a unique name within the
Eclipse workspace. Finally, you need to choose a Package Name as a fully qualified
unique identifier, which will stay the same during lifetime of your application. Even if
you release newer versions of your app, the package name must be retained, as this is
used by various app stores to identify your application.

The API levels should align with your application specs. You can define the Minimum
Required SDK as you target the lowest API level that you would like to support. The
lower API levels serve more devices but restrict your apps to fewer features. API 8 and
later can cover up to 95% of devices in the Android market.

In the Compile With selection, you choose a target API to compile your code against.
For the Theme, we ignore any other options but choose None, because we are not de‐
signing a native app, and we will override the look and feel of application with JavaScript
anyway.

You can also choose the highest API level that your application can work with in the
Target SDK selection, specifying the minimum supported SDK to the minimal version
you wish to support. If you decide to use this strategy for API selection, you will have
to diligently build a user experience wherein you gracefully notify the users about fea‐
tures not available on the older devices. Figure 2-1 illustrates the application creation
process.

Creating Your First Hybrid Android Project Using Eclipse IDE | 13

http://goo.gl/qQh1W
http://goo.gl/qQh1W

Figure 2-1. Creating a new Android Application Project using Eclipse

In the window shown in Figure 2-2, you define the location of your application in your
workspace.

14 | Chapter 2: Setting Up Your Android Development Environment

Figure 2-2. Defining your application workspace location

In the window shown in Figure 2-3, you provide a name for your main activity and its
layout file. Typically, MainActivity is good enough.

Creating Your First Hybrid Android Project Using Eclipse IDE | 15

1. Before editing your profile file, you will actually see the list of paths that are already in your profile. Type set
in the terminal to see the list of paths.

Figure 2-3. Creating your main activity and its layout name

Android Development Using the Command Line
While Eclipse may be the platform of choice for development, we will be focusing more
on a mix of Eclipse and command-line development. You can, however, integrate all
these commands into Eclipse with ease, as described in Ant: The Definitive Guide, Second
Edition (O’Reilly), for more details, visit the ANT with Eclipse instruction website.

Setting PATH Environment Variables
Once you have extracted the platform SDK on the filesystem, you need to set up your
PATH1 variables in the user profile for Mac OS X.

1. Open a terminal window.

16 | Chapter 2: Setting Up Your Android Development Environment

http://goo.gl/hdsgM

2. .profile is a special file in your home directory, in the sense that the commands in the $HOME/.profile file are
executed at login or open a new terminal session. These commands may be used to override the default
environment behavior.

2. Type cd ~ to go to your home directory.
3. Type touch .profile2 to create the hidden file named .profile, if one does not exist.
4. Type open -e .profile to open the file in the TextEdit application.
5. Then type export PATH=${PATH}:${ANDROID_HOME}/tools:${ANDROID_HOME}/

platform-tools.
6. Save the file and exit TextEdit, and we are done!

The changes you made in your profile file may not be in effect yet on the current ter‐
minal, so you need to run source ~/.profile to enable the changes (you need only do
this once for the current terminal). You can also just restart your terminal for a similar
effect.

Here’s an example of a .profile file:

sample Android SDK tools and platform-tools paths for MAC
export ANDROID_HOME=/Users/<username>/android-sdks
PATH=${PATH}:${ANDROID_HOME}/tools:${ANDROID_HOME}/platform-tools

What Is ADB (Android Debug Bridge)?
Mobile applications are often developed on a machine that is different from the device
you finally deploy your solution on, and Android is no different. The machine on which
you develop the solution is called a host, while the device for which the solution is
intended is referred to as a target.

ADB is a handy tool that comes as part of the Android SDK, which allows you to interact
with your connected Android devices or emulator (target) from the command line on
the host. An Android device can be connected to the development host machine using
either TCP or USB.

Basic ADB commands include:
adb devices

Lists the devices (targets) currently associated with the host.

adb shell

Opens a session to a basic shell running on the Android device.

adb install

Installs an application (*.apk) file onto your device.

What Is ADB (Android Debug Bridge)? | 17

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

adb uninstall

Uninstalls an application from the device.

adb logcat

Streams the activity log from your device to the console.

adb shell am start

Sends an intent to the package manager component to be started. The intent may
start an activity (application) or may just deliver the intent to an existing activity if
it is already running.

adb shell am instrument

Starts an instrumentation. Typically, this target <COMPONENT> is in the form
<TEST_PACKAGE>/<RUNNER_CLASS>.

adb shell dumpsys <?>

Dumps all available data about a given parameter. For example, you can get more
information about the battery by typing the following command: adb shell dump
sys battery. To get the list of services in Android from the command line, you
can run adb shell dumpsys | grep DUMP. Once you get the result, you can then
run each command individually.

adb shell "am start -a android.intent.action.MAIN -n <packagename>/

<classname with packagename>"

Launches the activity from command line. For example, you can try adb shell "am
start -a android.intent.action.MAIN -n com.example.package/com.exam

ple.package.ExampleActivity".

Connecting an Android Device to the Development Host
Setting up a connection between an Android device and the host is very straightforward.
If connecting via USB, all you need to do is connect the device and the development
host via a USB cable. After this, you should be able to access the device using ADB or
Eclipse.

On Windows, you may have to install device-specific drivers before
you can connect to a device. However, once the drivers are installed,
the process is pretty much the same.

Connecting to an Android Device Over WiFi
ADB can connect to a device over WiFi as well. You can enable ADB over WiFi on the
device by executing the following set of commands on the device.

18 | Chapter 2: Setting Up Your Android Development Environment

adb shell

setprop service.adb.tcp.port 9999

stop adbd start adbd

On the development computer, you can connect to the device using the following com‐
mand:

adb connect 192.168.1.1:9999

Make sure you replace 192.168.1.1 with the actual IP address associated with the An‐
droid device and 9999 with an available port on the device you wish to use for ADB.

The following command can be used to switch ADB back to the USB mode:

adb usb

Using Apache Ant to Automate Building Android
Applications
To compile and package the application into what is known as an Android Package
(APK) from the command line, we will use Apache Ant. Apache Ant is a command-line
tool and a library (depending upon how you wish to use it) that can be used to automate
the build process or tasks. Ant provides a number of prepackaged tasks to compile,
assemble, and build Java applications. We chose Apache Ant as our command-line build
tool because Google, along with Eclipse plug-ins, ships an Ant-based build system and
associated tool chain.

Simply put, Ant is a tool that processes an XML-based scripting language to automate
tasks. While you can provide any Ant-compliant XML file to Ant for execution, the
default filename is build.xml. You can define all necessary build steps in this file. Each
Ant XML file is described in terms of a project, target, or task.

Google announced as part of the 2013 I/O conference that they will be
migrating from an Ant-based build system to a Gradle (Groovy) based
build system for Android. While the build system is still nascent, it
holds promise. We will be releasing all our build scripts for Gradle
eventually as the build system matures.

Here are some Ant terms with which you should be familiar:
Ant project

An Ant project is a group of targets, and tasks. A project is typically associated with
a single build file.

Using Apache Ant to Automate Building Android Applications | 19

Ant target
A series of Ant tasks to be executed in the order in which they are specified. An Ant
target can depend upon a number of other Ant targets for completion, there by
allowing us to build modular tasks.

Ant tasks
A unit of work that Ant can execute, such as compiling a source file, renaming files,
and so on. As discussed earlier, there are number of tasks that come prepackaged
with Ant. Users can develop their own tasks in Java or another scripting language
as desired. As you delve deeper into the details of Ant, you’ll realize the whole Ant
task notion is very flexible and can be leveraged to perform very complex operations
in a modular way.

To create a new Android project from the command line:

$ mkdir project_dir
$ cd project_dir
$ android create project -n HelloWorld -p ./ -t android-14
 -k com.helloworld --activity MainActivity
-p is the path where the project files are to be generated
-n Specified the name of the Project
-t The android SDK to be used for compilation
-k package name for the generated project
--activity Name of the generated Activity Class

Here’s the output of the preceding command:

Created directory
/Users/<username>/project_dir/src/com/helloworld Added file
./src/com/helloworld/MainActivity.java Created directory
/Users/<username>/project_dir/res Created directory
/Users/<username>/project_dir/bin Created directory
/Users/<username>/project_dir/libs Created directory
/Users/<username>/project_dir/res/values Added file
./res/values/strings.xml Created directory
/Users/<username>/project_dir/res/layout Added file
./res/layout/main.xml Created directory
/Users/<username>/project_dir/res/drawable-xhdpi Created directory
/Users/<username>/project_dir/res/drawable-hdpi Created directory
/Users/<username>/project_dir/res/drawable-mdpi Created directory
/Users/<username>/project_dir/res/drawable-ldpi Added file
./AndroidManifest.xml Added file ./build.xml Added file
./proguard-project.txt

You’ll notice that upon execution, a number of files—including build.xml—will be gen‐
erated by the Android tool. We will look at some of these files in this chapter. Let’s look
at build.xml for now.

<?xml version="1.0" encoding="UTF-8"?>
<project name="HelloWorld" default="help">
 <property file="local.properties" />

20 | Chapter 2: Setting Up Your Android Development Environment

 <property file="ant.properties" />
 <property environment="env" />
 <condition property="sdk.dir" value="${env.ANDROID_HOME}">
 <isset property="env.ANDROID_HOME" />
 </condition>
 <loadproperties srcFile="project.properties" />
 <fail message="sdk.dir is missing. Make sure to generate local.proper-
ties using 'android update project' or to inject it through the ANDROID_HOME'"
unless="sdk.dir"/>
 <import file="custom_rules.xml" optional="true" />
 <import file="${sdk.dir}/tools/ant/build.xml" />
</project>

To create the Ant build system for an existing project created using Eclipse, run the
following:

$ cd project_dir $ android update project -p .
-p is the path

Executing this command generates a build.xml quite similar to the one just shown. The
only difference being that, in this case, it will be able to retrieve Android target infor‐
mation and project details from the AndroidManifest.xml file in the current project
folder.

Once you create the Ant build files in your project, type ant help on command line to
see the available list of targets. (For Ant newbies, we are launching Ant and asking it to
execute tasks associated with the help target.)

Now that we have a basic understanding of how Ant works, let’s address the functionality
of some common build targets you will be using through your development.

cleans up the compiled files and generated resources
ant clean

compile and package a debug version of the app
ant debug

builds the debug version and installs it on the device or the
emulator. Another interesting aspect to observe is that you are chaining
multiple targets in the order they were mentioned on the command line
ant debug install

builds release version
ant release

If you want to release your Android application to Google Play or any other app store,
you need to self-sign your application with a certificate. Details about creating a self-
sign certificate can be found at the Android application signing instruction website.

In general, you will execute the following command to generate a signing key:

Using Apache Ant to Automate Building Android Applications | 21

http://goo.gl/QD4RT

keytool -genkey -v -keystore project_release.keystore -alias \
 project -keyalg RSA -keysize 2048 -validity 10000

After running this command, the key tool will prompt you for a password and a number
of distinguished data fields to identify your key and the keystore. It then generates the
keystore as a file called project_release.keystore in the current directory. The key
store and key are protected by the passwords you entered. The keystore contains a
single key, valid for 10,000 days. After having created a valid key store, you will have to
inform the Android build system about the keystore to be used for your project. Do
that by creating an ant.properties file in your project’s base directory (in the same di‐
rectory as build.xml). In this file, you need to specify the paths to the signing key and
the alias.

sample ant.properties file
Relative path to the keystore
key.store=project_release.keystore

The alias for the
key.alias=project

The password which you supplied while creating the alias for the
key.alias.password=MyPassword

Password for the key
key.store.password=MyPassword

Signing an application in Android associates it with a developer, which can then be used
to ascertain valid updates and remove applications from the app store.

Understanding the Android Build Process
The build process is almost similar for Eclipse and command-line builds. Unless you
are customizing the build process, they are one and the same. The Android build system
compiles your source code along with resources, then packages them into a ZIP-
compatible archive format. The build process on Android is composed of multiple
stages. Let’s look at these stages.

Resource Precompilation
The first step of the Android build system deals with autogeneration of an R.java file
using the apt tool. This file is placed inside the gen folder, and contains constants for
all resources in your project. The constants are used by developers to refer to resources
inside the packaged application.

Here is a sample R.java, which was generated for the hello world project:

/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *

22 | Chapter 2: Setting Up Your Android Development Environment

 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand. */

package com.helloworld;

public final class R {
 public static final class attr { }
 public static final class drawable {
 public static final int ic_launcher=0x7f020000;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040000;
 }
}

Service Interface Precompilation
The second build step deals with autogeneration of Java code corresponding to the
service interfaces declared in your project. Service interfaces are aidl files, which describe
a service interface. In this step, the aidl tool looks at these files and generates the ac‐
companying Java code. We will not look into aidl and service interfaces in this book;
this topic has just been mentioned for completeness purposes. If you’re interested in
more details on this topic, you can visit the Android AIDL website.

Java Compilation
After the code autogeneration phase is complete, the actual Java source code and the
autogenerated code is compiled to produce Java byte code. During the compilation
process, the Android build system automatically adds the following files to your class‐
path (.classpath):
android.jar

This file includes all android public APIs, stubs specific to the target platform for
your application.

libs/*.jar
Library jars you may have included in your project. These jars are located within
the libs subdirectory.

DEX Generation
The output of the previous stage is a JAR file, which then needs to be converted into the
DEX file format. DEX is the format supported by the Android or Dalvik virtual machine.

Understanding the Android Build Process | 23

http://goo.gl/8kSwI

In this step, the Android build system uses the dx tool to convert your application JAR
and all other exported JARs into a single dex file.

Resource Packaging
Now resources are packaged into a partial ZIP file using the apt tool. While strings are
placed in resources.arsc, the icons and other images are optimized and stored in this file
preserving their relative directory structure in the resource folder.

Creation of the APK File
Next, the apk builder tool combines the resources and the dex file to create an appli‐
cation package for your application inside the bin folder. The apk builder includes the
following components in the APK file.

• The Dalvik executable file bin/classes.dex
• Non Java resources in src folder
• Any native code, aka shared objects included in you project
• The partial resource package generated in the previous step along with the resour‐

ces.arsc file

Once the package apk file has been created, it is signed using the debug or release key,
depending on whether you are compiling a debug or a release build, respectively. The
Android build system generates the debug key store automatically for your development
purposes, which is located in the $HOME/.android folder.

Alignment
The final step of the build process deals with aligning the signed apk file to the 4 byte
boundary. This is done using the zipalign tool. This step is primarily an optimization
performed by the Android build system to allow the virtual machine to better memory
map the resources at runtime.

Once the apk file has been aligned, it can then be installed on the Android device or an
emulator.

CSS Preprocessors
CSS preprocessors take the CSS representational code written in a specific language to
compile and convert it into the normal CSS format. Although CSS is really simple to
understand, it can become hard to manage in a large scale project. With the help of CSS
processors, we can maintain our CSS code easier and faster.

24 | Chapter 2: Setting Up Your Android Development Environment

For example, consider a scenario in which you wish to use a particular shade of blue for
your app across all the CSS files. Now, let’s assume you wish to experiment with some
other color scheme and would like to see how your application looks in the new color
model. Traditionally, you would perform a mass search and replace within the CSS files,
replacing old color values with new ones. This old method is cumbersome at best, as
this kind of mass replace is often error prone because reverting the changes back may
affect the other values.

This is where the CSS preprocessors become a really handy tool for many developers
and designers. As you will see later in the chapter, you can use one of the several available
CSS preprocessors to represent you application CSS in a more structured way, leveraging
the concepts of object-oriented programming. This way, instead of replacing each in‐
stance of color or CSS attribute, you will focus on changing the base CSS classes with
specific values. These classes are then inherited by others to create a more structured
style representation for your app, thereby saving you time and preventing errors. CSS
preprocessors are based around the DRY (Don’t Repeat Yourself) principle. The syn‐
taxes are much easier to read than normal CSS syntaxes because they employ more
semantic markup.

There are many CSS preprocessors available for developers.

• SASS
• LESS
• Stylus
• Turbine
• Switch CSS
• CSS Cacheer
• CSS Preprocessor

We have chosen Syntactically Awesome Style Sheets (SASS) for building the CSS files
for our application in this book. You can use any other available technologies; the prin‐
ciples involved are similar with only minor syntactical differences across these tools.

You can find a lot of invaluable information about SASS at the SASS
website.

CSS Preprocessors | 25

http://goo.gl/0Bw3U
http://goo.gl/0Bw3U

Installing SASS
SASS was developed using Ruby and ships as a Ruby Gem. If you are using OS X, Ruby
and Ruby Gems are preinstalled for you. To install SASS from the command line, use
the following command:

$ gem install sass

For Windows, you will first install Ruby using an installer that can be found at the Ruby
Installer website. Once Ruby is installed, you can in place SASS as previously described
using the command line.

If the command fails in Windows, please make sure you have Ruby
and Ruby Gems in your path. Details on managing the path variables
in Windows can be found at the Windows website for managing en‐
vironment variables.

Here is some sample SASS code:

/* -- application.scss -- */
$font_family: Arial, Helvetica;
$font_size: 1.6em;
$images_path: "../../img/";
$padding: 18px;
$height: 50%;
$header_color: #00FFDE;

SASS files have .SCSS file extension. These are text files which can be
created using any standard text editor.

Here is a simple usage of $header_color and $font_size in your SCSS file.

/* -- header.scss -- */
@import "application";
.main_header {
 color: $header_color;
 font-size: $font_size;
}

As you can see, SASS allows you to define variables, which can be used across multiple
CSS classes, thereby avoiding the need for you to repeat yourself.

Use the following command to convert an scss file into a css file:

$ sass header.scss header.css

26 | Chapter 2: Setting Up Your Android Development Environment

http://goo.gl/tXDmL
http://goo.gl/tXDmL
http://goo.gl/ByoaB

Once you run the command to convert the SASS file into normal CSS format, this is the
output you will get (shown in Figure 2-4).

/* -- header.css -- */
.main_header {
 color: #00FFDE;
 font-size: 1.6em;
}

Figure 2-4. SASS conversion process flow

SASS has many nice features that will help you develop your CSS quickly with little
hassle. For example, you can tell SASS to watch your SCSS files for any changes and
convert them into CSS files on the fly:

SASS will watch any changes in the +header.scss+ file
and automatically update the +header.css+ with changes.
$ sass --watch header.scss:header.css

SASS will watch any changes in the +sass_source+ directory
and automatically update the files in the +stylesheet_output+
directory with changes.
$ sass --watch sass_source:stylesheet_output

Integrating SASS into the Android Command-Line Build System
The following ANT macrodef defines a task that can be used to preprocess SCSS files to
generate CSS files.

<!-- SASS - Converting SCSS files to CSS -->
<macrodef name="sass-css" description="SASS - Converting SCSS files to CSS">
 <attribute name="include-path"/>
 <attribute name="src-sass-file"/>
 <attribute name="dst-css-file"/>
 <sequential>
 <exec executable="sass">
 <arg value="-I@{include-path}" />
 <arg value="@{src-sass-file}" />
 <arg value="@{dst-css-file}" />
 </exec>
 </sequential>
</macrodef>

Installing SASS | 27

For this task to work correctly, make sure that SASS is properly in‐
stalled and the executable is reachable through the user path. You can
also provide the complete path to the SASS executable if that is not
possible.

The previous Ant macro can be called from anywhere within Ant to convert an existing
SASS file to a CSS file. For example, in the hybrid application we will be building in this
book, we have used the macro in the following way:

<target name="sass-css">
 <sass-css
 include-path="src/hybrid/css/ldpi"
 src-sass-file="src/hybrid/css/import.scss"
 dst-css-file="assets/css/ldpi.css" />
 <sass-css
 include-path="src/hybrid/css/mdpi"
 src-sass-file="src/hybrid/css/import.scss"
 dst-css-file="assets/css/mdpi.css" />
 <sass-css
 include-path="src/hybrid/css/hdpi"
 src-sass-file="src/hybrid/css/import.scss"
 dst-css-file="assets/css/hdpi.css" />
 <sass-css
 include-path="src/hybrid/css/xhdpi"
 src-sass-file="src/hybrid/css/import.scss"
 dst-css-file="assets/css/xhdpi.css" />
</target>

As you can see, we are exporting the CSS for multiple resolutions. You can customize
this code fragment to suit your application requirements.

JSLint Framework and Strict Coding Conventions
JSLint is a tool that was originally developed by Douglas Crockford for validating Java‐
Script coding conventions. Although JSLint is not a proof of a program’s correctness, it
can help detect problems in your code before they slip into your production code. JSLint
is highly configurable and has many features that can help spot incorrect syntax, un‐
defined variables and functions, missing semicolons, erroneous expression statements,
and many other pitfalls.

jslint4Java is a command-line wrapper for the tool that can be integrated into Ant as
a task. We will be using this task to automatically check the integrity of our JavaScript
project every time we compile the project.

<!-- JSLint - Syntax-checks JavaScript files -->
<property name="jslint.dir" value="${out.dir}/jslint" />

<property name="jslint.version" value="1.4.7" />

28 | Chapter 2: Setting Up Your Android Development Environment

<target name="get-jslint"
 description="JSLint - Syntax-checks JavaScript
 files" if="jslint-not-found">

 <mkdir dir="${jslint.dir}" />

 <get dest="${jslint.dir}"
 skipexisting="true"
 src="http://repo2.maven.org/maven2/rhino/js/1.7R2/js-1.7R2.jar"
 verbose="true" />

 <get dest="${jslint.dir}"
 skipexisting="true"
 src="http://repo2.maven.org/maven2/com/googlecode/jslint4Java/
 jslint4Java/${jslint.version}/
 jslint4Java-${jslint.version}.jar"
 verbose="true" />

 <get dest="${jslint.dir}"
 skipexisting="true"
 src="http://repo2.maven.org/maven2/com/googlecode/jslint4Java/
 jslint4Java-ant/${jslint.version}/
 jslint4Java-ant-${jslint.version}.jar"
 verbose="true" />

</target>

<target name="run-jslint">

 <available file="${jslint.dir}/js-1.7R2.jar"
 property="js-1.7R2.present"/> <available
 file="${jslint.dir}/jslint4Java-${jslint.version}.jar"
 property="jslint4Java.present"/>

 <available
 file="${jslint.dir}/jslint4Java-ant-${jslint.version}.jar"
 property="jslint4Java-ant.present"/>

 <condition property="jslint-not-found">
 <not>
 <and>
 <isset property="${js-1.7R2.present}"/>
 <isset property="${jslint4Java.present}"/>
 <isset property="${jslint4Java-ant.present}"/>
 </and>
 </not>
 </condition>

 <antcall target="get-jslint"/>

 <taskdef name="jslint"

JSLint Framework and Strict Coding Conventions | 29

 classname="com.googlecode.jslint4Java.ant.JSLintTask" >

 <classpath>
 <pathelement location="${jslint.dir}/js-1.7R2.jar" />
 <pathelement
 location="${jslint.dir}/
 jslint4Java-${jslint.version}.jar" />
 <pathelement
 location="${jslint.dir}/
 jslint4Java-ant-${jslint.ver
sion}.jar" />
 </classpath>
 </taskdef>

 <jslint haltOnFailure="true" >
 <formatter type="plain" />
 <fileset
 dir="${src.dir}/js"
 excludes="vendor/**/*.js"
 includes="**/*.js" />
 </jslint>
</target>

In this Ant task, if the jslint4Java for Ant is not available locally, we can download
the specified version jslint4Java-1.4.7.jar file while building our project. Subsequently,
we will use the existing version for all future builds. The latest version of jslint4Java
can be downloaded from the jslint4java download website.

Process HTML Templates
John Resig (creator of jQuery) is said to be the person who first popularized the concept
of HTML templates within script tags. Visit the JQuery Micro-Templating website for
more information. The idea is to preload the markup data and logic within a script tag
with an invalid script type. The browser automatically ignores script tags with invalid
types but we are free to access the content via JavaScript. This is a lot better than the
older way of using hidden div tags because it is less memory intensive and more per‐
formant.

We leverage this concept and take it a step further. Basically, the idea is to build the user
application using HTML templates, and then merge these templates into index.html
during compilation.

Following is an example of what an HTML template looks like. Templates can not only
contain regular markup but actual conditional logic to be used by template processors.
The type="text/x-tmpl" makes this script invalid to the JavaScript interpreter. The
purpose of this is that we want the WebView or browser to ignore the content within
these tags and keep them nonrendered because we will be rendering these templates
using JavaScript. All the placeholder variables in the template will be replaced with the

30 | Chapter 2: Setting Up Your Android Development Environment

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://goo.gl/YMog8
http://goo.gl/sddeF

real values using our JavaScript template engines. We will introduce more details about
JavaScript templating techniques in later chapters.

We have used Underscore.js for the templating engine in our sample project.

<script id="tmpl_about_index" type="text/x-tmpl">
 <section class="content about">
 <div class="wrapper">
 About Hybrid Note
 Hybrid Note is a productivity app
for taking your notes...
 Version <%= data.app_version %></
span>
 Copyright <%= data.current_year
%> Hybrid Note
 </div>
 </section>
</script>

To facilitate the merging of HTML templates, we’ve built an Ant task to concatenate and
append all our templates inside the index.html file.

<!-- Templates - Process HTML templates files -->
<macrodef name="templates"
 description="Templates - Process HTML templates files" >

 <sequential>
 <!-- merge all template files into templates.html -->
 <concat destfile="${out.dir}/templates.html" >

 <fileset dir="${src.dir}/templates"
 includes="**/*.tmpl" />
 </concat>

 <loadfile property="templates"
 srcFile="${out.dir}/templates.html" />

 <copy file="${src.dir}/index.html"
 overwrite="true"
 todir="${assets.dir}" >

 <filterset>
 <filter token="templates"
 value="${templates}" />
 </filterset>
 </copy>
 </sequential>
</macrodef>

Process HTML Templates | 31

Minifying CSS and JavaScript Files Using YUI Compressor
As you are developing for mobile phones and potentially would be downloading content
over the Web, it is important to send as few bytes as possible of CSS and JavaScript over
the network. Also keep in mind that it is not only the minimum number of bytes we
should send, but the fact they should be sent across in a minimum number of requests.
The minifiers are utilities that compress CSS, JavaScript, and HTML markup files, while
still retaining the structure of code, thereby reducing the amount of data transmitted
over the wire.

YUI Compressor is a Java-based, free, open source tool. It is one of the most popular
JavaScript minifier tools, designed to be very safe and yield a better compression ratio.
The YUI Compressor can also compress CSS files. With the help of YUI Compressor
and Ant, we can consolidate our JavaScript and CSS files, then compress and combine
them into a single minified version, one for CSS and one for JS, in order to obtain faster
loading time and optimize overall performance.

<!-- tells Ant to refer to your environment vars -->
<property environment="env" />

<!-- defines location of YUI Compressor -->
<property name="lib.dir" value="${env.COMPRESSOR_HOME}" />

<!-- defines output directory -->
<property name="build.dir" value="build" />

<!-- output files, one for JS one for CSS -->
<property name="final_js" value="${basedir}/js/complete.js" />
<property name="final_css" value="${basedir}/css/complete.css" />

<!-- define nicknames for libraries -->
<property name="yui-compressor"
 location="${lib.dir}/yuicompressor-2.4.2.jar" />

<property name="yui-compressor-ant-task"
 location="${lib.dir}/yui-compressor-ant-task-0.5.jar" />

<!-- adds libraries to the classpath -->
<path id="yui.classpath">
 <pathelement location="${yui-compressor}" />
 <pathelement location="${yui-compressor-ant-task}" />
</path>

<!-- define tasks -->
<taskdef name="yui-compressor"
 classname="net.noha.tools.ant.yuicompressor.tasks.YuiCompressorTask">
 <classpath refid="yui.classpath" />
</taskdef>

<!-- targets -->

32 | Chapter 2: Setting Up Your Android Development Environment

<target name="-concat">

 <!-- concatenates all compressed JS files into one -->
 <concat destfile="${final_js}" force="true" fixlastline="true">
 <fileset dir="${build.dir}" includes="**/*.js" />
 <fileset dir="${build.dir}" includes="**/widgets/*.js" />
 </concat>

 <!-- concatenates all compressed CSS files into one -->
 <concat destfile="${final_css}" force="true" fixlastline="true">
 <fileset dir="${build.dir}" includes="**/*.css" />
 <fileset dir="${build.dir}" includes="**/flexgrid/*.css" />
 </concat>

</target>

<target name="-minify">

 <!-- compresses each JavaScript and CSS file -->
 <!-- and saved as {original_name}-min.{extension} -->
 <yui-compressor
 warn="false"
 munge="true"
 preserveallsemicolons="false"
 fromdir="${basedir}"
 todir="${build.dir}"
 />

</target>

<!-- creates the temporary directory -->
<target name="-pre-minify">
 <mkdir dir="${build.dir}" />
</target>

<!-- deletes the temporary directory and all its contents -->
<target name="-post-minify">
 <delete dir="${build.dir}"/>
</target>

<target name="min-web-assets" depends="-pre-minify,-minify,-concat,-post-
minify" />

Using Safari and Chrome Browsers for Faster JavaScript
Debugging and UI Changes
From time to time, you may want to open your HTML files in your browser in order to
debug your JavaScript or try out different CSS values using Web Inspector in Safari or
using Developer Tools in the Chrome browser. Safari and Chrome are the best to use
in these situations as they feature a profile of the WebKit that is also used across mobile

Using Safari and Chrome Browsers for Faster JavaScript Debugging and UI Changes | 33

devices. With the help of the following Ant task, we can launch your app’s HTML file
in the browser using the following Ant command.

$ ant open-browser

<!-- Safari - Opens the Safari browser with mockup data -->
<target name="open-browser" description="Opens the Safari browser with mockup
 data">
 <exec executable="open" >
 <arg value="-a" />
 <arg value="safari" />
 </exec>
</target>

The kill-safari shell script exits the Safari browser.

#!/bin/sh
PIDS=`ps ax | grep 'Safari' | grep -v grep | sort | \
 awk '{print $1}' | perl -ne 'chomp;print "$_ "'`
if ["$PIDS"]
 then kill $PIDS
fi
echo "waiting for runner to start"
sleep 3s

34 | Chapter 2: Setting Up Your Android Development Environment

CHAPTER 3

Android Fundamentals

In this chapter, we will introduce you to the basics of the Android application frame‐
work. You can skip to the next chapter, if you are already comfortable with Android.

Android Application Architecture
An Android application is an archive that includes a combination of compiled Android
components, a manifest file, and a bunch of resources and assets. We will look at these
in more detail in this chapter. The archive is a file with an APK (Android package)
extension. To put it simply, an APK file is a fancy JAR file. More details on the APK file
format can be found at the Wikipedia website for APK definition.

Android application framework and middleware are highly componentized and very
flexible for UX customizations on a per-application basis. Android is secure, in that
applications run in their own address space and an isolated sandbox that has limited or
no access to other applications’ data.

Despite all the security features, the Android application framework has been written
from the ground up to allow application components to cooperate with those declared
in the same or other apps to deliver a rich experience. This functionality is quite unique
to Android and has been one of key driving factors for its success among developers.
This topic will be further detailed later.

Key Android Components
The following sections outline the components that are necessary to programming for
Android.

35

http://goo.gl/HCjs4

Dalvik Virtual Machine (DVM)
Android applications run on a mobile optimized version of JVM developed by Google,
known as Dalvik Virtual Machine (DVM), which gets its name from a town in Iceland.
The DVM toolkit features a dex compiler, optimizer, and a runtime. DEX is an acronym
for Dalvik executable. During compilation, Dexer or the Dex compiler takes the regular
Java byte code and converts it into the dex format, which is then packaged as part of the
APK. Once dex code has been generated for the application, a tool known as dexopt is
used for verification of the dex code.

Dexpot does its verification by performing an abbreviated VM initialization. It then
loads zero or more DEX files from the bootstrap classpath and sets about verifying and
optimizing whatever it can from the target DEX. On completion, the process exits,
freeing all resources. In addition to this, DVM may perform some additional optimiza‐
tions at runtime the first time the DEX code is loaded. Almost all of these optimizations
deal with intelligently replacing sections of code with either one of pre-computed out‐
put, inline expansion of functions, or optimizing call flows.

View
A view represents a basic building block for a user interface in Android. It is rectangular
in shape and is responsible for visual representation and event handling.

Activity
An activity represents the visual screen of an android application with which users can
interact. An activity controls a group of views and usually correspond to a single logical
screen of the app. An activity in Android creates a window over which UI components
can be placed. We will discuss activities in more detail in subsequent sections.

Fragment
A fragment is a component with which users can interact. Fragments are like activity in
most cases, except an activity can contain multiple fragments. Fragments were originally
introduced in HoneyComb to support larger activities that had multiple UI components
and complex logic driving the life cycle and event handling for these components. Larger
activities resulted from the availability of larger screens, wherein there was enough real
estate for developers to build very complex user experiences. In essence, fragments give
developers an opportunity to group their views into logical blocks that can then be
managed by the activity as opposed to managing them all at one level.

While the original driving factor for fragments was to modularize the UI, Android took
the concept a little further by allowing fragments to inherit a life cycle similar to that of
an activity. It must however be noted that a fragment’s life cycle is driven by the life cycle

36 | Chapter 3: Android Fundamentals

of the activity with which it is attached. Doing this allowed fragments to be self-
contained blocks of code without much dependence on the activity. This architecture
goes a long way, as it then allows developers to dynamically instantiate, dispatch, and
combine these fragments with ease.

Because fragments can be dynamically instantiated, replaced, and combined within an
activity, Android also features a transactional model for performing fragment opera‐
tions. The transactional approach allows users to group a set of fragment operations
before they are dispatched for execution.

You can find more details on fragments from the Android Fragment API website.

Intent
An intent represents a message, request, or notification sent from one Android com‐
ponent to another. The intent framework is one of the most important IPC mechanisms
built into the platform. An intent can contain additional parameters to better qualify
the message for the receiver.

Services
A service in Android is a task that does not have an associated UI and runs in the
background. Services are usually deployed to perform long running operations. Like an
activity, a service can be consumed by components in a different application.

Content Providers
Content providers are data management components for storing a structured set of data
in Android, which allows totally unrelated applications to share data. One of the salient
features of the content provider framework is that it exposes a very RESTish interface
to access data from within the device. The structured data source and individual records
can be addressed as URIs on which CRUD operations can be performed.

Content providers can also implement a protection model around data access, thereby
preventing unauthorized applications from getting the data.

While developers can write their own content providers, Android comes with a rich set
built in. Information about these can be found at the Android android.provider API
website.

Broadcast Receiver
As discussed earlier, intents are heavily used in Android for interprocess communica‐
tion. Intents can either be directed to specific components or can be broadcasted to
every component in the device. Depending upon the nature of intent and whether it is
broadcasted, it may be received by more than one component. Broadcast is a handy

Key Android Components | 37

http://goo.gl/Ehqku
http://goo.gl/NpIVK
http://goo.gl/NpIVK

strategy often used by system components to broadcast system state. One of the key
advantages of this strategy is that Android will instantiate a component in case it has
expressed interest in a specific kind of intent but is not currently running.

A broadcast receiver is a application component that listens for incoming intents.

Security Model in Android
Android also implements an access control system, which restricts applications from
consuming any APIs for which they have not been authorized. APIs are associated with
privilege levels. Every application in Android declares a set of privileges it would like
to gain access to. When an application is installed on an Android device, the application
framework notifies the device user of the request privileges and their significance and
asks for the user’s consent. An application will only be installed once the user approves
the privileges required by the app.

Applications that serve other components in the device can also declare privileges and
hence control who can access them during normal course of operation.

The Android security model is based around the notion of secured installation philos‐
ophy. This means application privileges are not granted at runtime. Privileges are gran‐
ted only once during installation.

Resources
Resources are supplemental assets needed for visual representation of the app. Styles,
dimensions, strings, screen layouts, shapes, and images all can be collectively referred
to as resources. The resources in an Android app are inside the res folder of your ap‐
plication. Resources play a very important role in the Android application architecture.
The most important being that one can change the resources of the application, and
hence the look and feel of the app, without changing the code. This strategy allows
developers to separate UX from code. What makes resources special from the developer
standpoint is that, except for a special category of resources—i.e., raw—Android inter‐
prets the resources for you and provides you with a number of convenient functions to
pick the right set for your device and configuration. For example, instead of using string
literals in the code, you would use an Android generated ID. This indirection allows
Android to yield appropriate strings based on device language and locale, and allows
you as a developer to specify different sets of strings outside the source code.

The syntax you use to allocate an ID to a resource in the XML file is called resource-
reference syntax. This syntax is not limited to allocating just IDs: it is a way to identify
any resource such as a string, a layout file, or an image.

How is this general-purpose means of locating a resource or referencing an existing
resource tied to IDs? IDs are numbers that are tracked as resources much like strings.

38 | Chapter 3: Android Fundamentals

Imagine your project holding a bucket of numbers. You can take one of those numbers
and allocate it to a control.

Let’s first investigate this resource-reference structure a bit further. This resource ref‐
erence has the following formal structure: - @[package:]type/name.

The type corresponds to one of the resource-type namespaces available in R.java, some
of which follow:

• R.drawable

• R.id R.layout

• R.string

• R.attr

• R.plural

• R.array

If you recall the R.java file, discussed in Chapter 2, you’ll notice that there is an entry
corresponding to each resource. The generated IDs are integers. Most methods that take
strings also take these resource identifiers as inputs. Android resolves those ints to
strings where necessary depending upon the device configuration.

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">MainActivity</string>
</resources>

/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.helloworld;

public final class R {
 public static final class attr {
 }
 public static final class drawable {
 public static final int ic_launcher=0x7f020000;
 }
 public static final class layout {
 public static final int main=0x7f030000;
 }
 public static final class string {
 public static final int app_name=0x7f040000;
 }
}

Resources | 39

String Resources
Android allows you to define strings in one or more XML resource files. These XML
files containing string-resource definitions reside in the /res/values subfolder. You can
use any name for the file, however, usually developers and Android build systems use
strings.xml. You can also split your strings across multiple files, and Android will handle
them just fine.

Layout Resources
Android provides convenience methods to load a view from an XML file, which make
up a layout resource. The XML file is quite similar to an HTML file in terms of describing
the content and layout of a web page. Lets look at a sample XML layout resource file:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" >

 <Button android:id="@+id/format"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/btn_name"
 android:onClick="doSomething" />
</LinearLayout>

Inside your activity, you can send a request to Android to load a view description from
an XML file using the setContentView() method. This is one of the several available
options for loading views in Android. The process of loading a view from an XML file
is known as inflation. This pattern is used widely in Android, and hence, we will spend
a bit more time on this topic.

When you send a request to Android to load a view from an XML file, Android internally
creates each and every view in the order in which they are specified in the XML. All the
properties defined for the view are passed to the constructor of the view by the Android
framework. The views are expected to apply the properties to incorporate any user-
specified customizations. The views are then woven with each other in order of view
hierarchy. The code would look something like:

public class MyActivity extends Activity {
 protected void onCreate(Bundle savedInstance) {
 super.onCreate(savedInstance);

 final LinearLayout ll = new LinearLayout(this);
 ll.setLayoutParams(LinearLayout.FILL_PARENT, LinearLayout.FILL_PARENT);

 final Button button = new Button(this);
 button.setId(R.id.format);

40 | Chapter 3: Android Fundamentals

 button.setText(R.id.btn_name);

 ll.addSubView(button);

 button.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 doSomething(v);
 }
 });

 setContentView(ll);
 }
 }

As you can easily imagine, this can get quite large and complex based on the complexity
of the UI. Inflation process hides this complexity from you as a developer, letting you
concentrate on business logic.

There are other types of resources, as noted previously. Discussing them is outside the
scope of this chapter.

Compiled and Uncompiled Android Resources
While most of the Android resources get compiled into a more optimum binary format,
raw resources are copied as-is to the device. One key advantage of compiled resource
files is that they allow you to pick correct resources based on device language. However,
there may be times when you do not want this to happen. For such files, you can place
them inside the /res/raw/ directory instead, they don’t get compiled into binary format.
However, because it is a resource, Android generates an ID through R.java. The resource
type for raw files is raw. Audio and video files fall into this category.

Assets
Android offers one more directory where you can keep files to be included in the pack‐
age: /assets. It’s at the same level as /res, meaning it’s not part of the /res subdirectories.
The files in /assets do not generate IDs in R.java; you must specify the file path to read
them. The file path is a relative path starting at the /assets folder.

Structure of an Android App
If you recall the directory structure for an Android project, it looks something like:

├── AndroidManifest.xml
├── ant.properties
├── bin
├── build.xml
├── libs

Compiled and Uncompiled Android Resources | 41

├── local.properties
├── proguard-project.txt
├── project.properties
├── res
│ ├── drawable-hdpi
│ │ └── ic_launcher.png
│ ├── drawable-ldpi
│ │ └── ic_launcher.png
│ ├── drawable-mdpi
│ │ └── ic_launcher.png
│ ├── drawable-xhdpi
│ │ └── ic_launcher.png
│ ├── layout
│ │ └── main.xml
│ └── values
│ └── strings.xml
└── src
 └── com
 └── helloworld
 └── MainActivity.java

Let’s have a quick look at some of these:
AndroidManifest.xml

Android Manifest file.

src
All your Java source goes here, by default anyway.

gen
This is where the autogenerated code will be placed.

bin
This directory holds the temporary binary output and the application once it has
been successfully compiled.

libs
This directory holds any third-party JARs your application requires.

res
Here is where we store our styles, view layouts, strings, and so on.

res/drawable{qualifier}
This folder inside the res folder contains the graphics files. The qualifier allows
Android to pick up files based on device capabilities; it is a predefined suffix that
you can add after drawable to help Android will pick the right resources based on
the device. In the previous example, ldpi is low dpi, and for devices that have very
low density screens, images will be picked up from here. More details on resource
resolution can be found at the Android Supporting Multiple Screen website.

42 | Chapter 3: Android Fundamentals

http://goo.gl/9smqL

res/layout{qualifier}
Screen layouts in Android are XML files. In these XML files, we can specify what
widgets we would like to use and how to lay them out on the screen. These files are
located in the layout folders.

res/values{qualifier}
XML files that store various string values (titles, labels, and so on).

build.xml and .properties
These files are used for the Ant-based command-line build system. Please refer to
Chapter 2 for more details.

proguard-project.txt
Proguard is a Java library that can be used to minimize, optimize, and obfuscate
Java code. It optimizes byte code and removes unused instructions, symbols, and
classes. It can also obfuscate the code by renaming classes and fields to smaller
names, which makes the source code harder to read. The command-line builds for
Android can express proguard on your apps. However, it is not enabled by default.
This file is a sample proguard config, which you can use as the starting point for
your app.

You can enable the proguard builds for you app, by setting the pro
guard.config property in the Ant build file.

Application Manifest
If you recall the directory structure for an Android project, you will find one of the files
is named AndroidManifest.xml. Every Android project must contain this file in the root
folder of the application project. This file is read by Android while installing or launch‐
ing the application to determine application-specific information. The AndroidMani‐
fest.xml file describes the Android application and everything it can do.

Meta information contained within AndroidManifest.xml accomplishes the following:

• Helps Android OS determine the effective permissions for the applications and
implement access control for any unintentional access to the platform by the app.
The permissions described in the AndroidManifest.xml file are presented to the user
at the time of installation, and only when the user accepts to grant these privileges
does Android allow the user to install the app on the device.

• Declares the minimum level of the Android API that the application requires.
• Lists the libraries that the application must be linked against.

Application Manifest | 43

• Describes the background services implemented in the app.
• Allows the application to register for system events automatically.
• Allows the application to register as a content handler for specific mime types and

actions. Actions determine whether the user is viewing, creating, or editing content.
• Describes the various UI controllers (activities) that are the UI entry points for the

application.
• Declares the device capabilities needed by the app to function properly. This in‐

formation is also used by the app stores to filter apps for certain devices.
• Declares the UI themes to be used for the application.
• Declares a test instrumentation runner to declare the component that can be used

for unit testing.

And many more, which might be outside the scope of this book. However, we encourage
you to look at the Android AndroidManifest.xml File website for more comprehensive
details on AndroidManifest.xml and how it is used in Android.

The alert given before installation, shown in Figure 3-1, informs users of the require‐
ments of the application. The user can then approve the installation of the application
and the usage of the declared privileges.

Because the user will be expecting the application to access only the
information that is relevant to the application, we advise developers to
only declare and use functionalities that are essential for the usage of
your application.
If an application tries to access resources that are outside the scope of
the application, users have more hesitation about installing the appli‐
cation for fear of loss of privacy/personal data.

Let’s examine some of the important information that is declared in the application
manifest file.

44 | Chapter 3: Android Fundamentals

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://goo.gl/7owkl

Figure 3-1. Install Privileges screen for a Google Play application

Application Package Name
The application package name is the name of the Java package that serves as the root
package of the project. The package name is used as a unique application identifier by
the Android OS.

The application package name can be declared in the Android manifest using the pack
age attribute of the manifest tag.

An example of the package name declaration in the Android manifest can be as follows:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.example.app"
 android:versionCode="1"
 android:versionName="1.0">
</manifest>

manifest is the root tag for the Android manifest file. In addition to the package at‐
tribute, it contains the versionName and versionCode attributes.

Application Manifest | 45

The versionName attribute describes the current version of the application in a human-
readable form.

The versionCode attribute is a monotonically increasing positive number that is used
by the Android OS to identify the latest version of the application. This value is used by
the various app stores to generate analytics information for your app.

When debugging or collecting logs for an application, the package
name can be used to identify the application and to filter logs corre‐
sponding to the application. Please refer the DDMS section of the
Android developer website for more tips on using DDMS.

Application
The class android.app.Application is the base implementation of a boilerplate appli‐
cation provided by the Android framework. This class serves as the main entry point
to the application. Each Android application is required to declare one instance of this
class. For most applications, android.app.Application should be sufficient, however,
since this is the only pervasive class in the whole Android application, it is often used
by developers to store application-wide accessible data. The Android OS will instantiate
an object of this class whenever the application is launched. Android applications are
special, and they stay in memory even when the user closed the UI screens.

Android continues to keep the application in memory until either the
device is rebooted or it needs resources to be freed. Android does this
to minimize application launch time. Because the application object
remains in memory, it is important that we do not store references to
huge data blocks in the application, or else Android will be forced to
terminate and clean up the application when it goes into the back‐
ground, preempting all optimization and resulting in a negative user
experience.

The application tag in AndroidManifest.xml can be used to declare application-
specific properties. Application-specific properties are described with the help of at‐
tributes defined as part of the application tag. Some commonly used attributes are:
name

Specifies the custom class to be used while launching the android application. This
class must extend the android.app.Application class.

icon

Specifies the icon to be displayed in the Application Manager for this application.

46 | Chapter 3: Android Fundamentals

http://goo.gl/lIu1w

title

Specifies the application title to be displayed by the Application Manager.

description

Any long descriptive text that you would like to supplement the title with for this
application.

hasCode

Specifies whether this application has any code or not, noncode APKs are often
used to deliver resource payloads on an Android device.

hardwareAccelerated

Specifies whether the application will use OpenGL-based hardware acceleration to
render graphics on platforms that support this feature. In other words, enabling
this flag will render smoother animations and graphics in your application. On
older platforms, this attribute is ignored. This feature was enabled in Android ver‐
sion 3.0. Use of hardware-accelerated graphics is a CPU-intensive operation and
can lead to higher battery use. Having said that, since not all 2D operations are
optimized for hardware acceleration, Google recommends that you test your app
to make sure it is stable when this feature flag is turned on.

android:theme

Android features a highly customizable user interface wherein you can customize
different aspects of the UI by overriding platform style values using XML files. This
tag allows developers to specify a style resource that describes the overall visual
design for the application. Android will default all activities to the specified style
for the given application.

Here’s an example of the application tag in the Android manifest:

<application
 android:label="ExampleApp"
 android:icon="@drawable/example_icon"
 android:name=".ExampleApp">
</application>

The Java class name for various entities in the Application manifest
can be specified as an absolute package path or, if prefixed with a period
(.), will be appended to the package name. As in the previous exam‐
ple, the application class name can be specified as .ExampleApp or
com.example.app.ExampleApp. They both refer to the same class path
and can be referred to interchangeably in the manifest.

Application Manifest | 47

Make sure your package name does not include google, android, or
example as the starting qualifier. Google filters out these apps and
therefore, they cannot be published.

Activity
An activity is an application component associated with a screen with which users can
interact to perform actions and receive feedback.

Android applications are based on the Model-View-Controller (MVC) architecture.
MVC is a software pattern that calls for isolating data presentation from data and busi‐
ness logic. In MVC architecture, data is referred to as the model, presentation the view,
and business logic is called the controller.

Activities correspond to the view controller in this architecture—i.e., they present a UI
and implement the business logic to process events like touch and swipe.

An Android activity can receive user input if and only if it is running in the foreground.
In Android, only one activity can be in the foreground at any given time. This is im‐
portant to remember because although you may see multiple activities on the screen—
for example, in the case of overlays—only the topmost can receive user events.

When the activity goes to the background, it is paused and when no longer visible, it is
marked as a candidate for cleanup. Activities marked for cleanup may stay in memory
for a long time. The actual time at which the activity is removed is determined by the
OS. The application developer should not make any assumption about the time period
that the activity is alive. Android will clean up these activities only when it is running
low on memory.

The life cycle for an Android activity is modeled around a finite state machine, as shown
in Figure 3-2.

While Android manages the life cycle of the activity, it notifies the developer of the
transitions through callbacks. These callback methods are crucial to developing a strong
and flexible application, as developers are expected to override these callbacks to inject
their application-specific logic. An activity life cycle is also associated with other activ‐
ities through the notion of a stack (also referred to as a task), through which a user can
move backward. When a new activity is launched, it is pushed onto the back stack and
is given user focus. When the user is done with the current activity and closes it, the
topmost activity is popped from the back stack, and the previous activity is resumed.

48 | Chapter 3: Android Fundamentals

Figure 3-2. Activity life cycle (courtesy d.android.com)

From a life cycle standpoint, an activity can largely exist in one of three states:
Resumed

An activity is considered to be resumed when it is in the foreground and has user
focus. Some texts also refer to this state as the running state of the activity. In this
state, the activity is associated with the Window Manager and retains the entire
state of its member variables.

Paused
An activity is said to be paused when it is still visible, but is behind another resumed
activity. A paused activity is retained by the OS and kept in memory for the longest
duration, unless the OS is running critically low on memory. Activities often enter
a paused state when anther partially visible activity is displayed on top of an existing

Activity | 49

activity. A paused activity is still associated with a window manager instance and
can update the UI based on timer events.

Stopped
An activity is said to be stopped when it is completely obscured and sent to the
background. It is no longer associated with the window manager. In this state, the
activity may still be alive, however, it is marked as a candidate for cleanup for when
the system is running low on memory.

Android allows developers to define multiple activities per application. Each of these
activities can be launched from either within the application, as a result of user inter‐
action with a different activity, or externally from other applications or the Android
platform. There is no hard and fast rule as to when to define a new activity, however as
a general rule, every logical screen of the application should be implemented as a sep‐
arate activity.

The activity tag is used to declare an activity that has been implemented as part of the
Android application.

An example of the activity tag is as follows:

<activity
 android:name=".ExampleActivity"
 android:label="Example">
</activity>

In the previous code snippet, an activity with class name ExampleActivity was declared,
which is located at the application package level. Hence, if the application package was
com.example, the fully qualified package path to the activity will be .ExampleActivity.

You can also specify a fully qualified path for the activity class in case the activity being
declared is part of a different package than what has been declared in the application
package identifier.

Some commonly used attributes for the activity meta tag are:
name

Specifies the name of the class that implements the activity. As described earlier, it
can also be a fully qualified package path in case the activity is not defined in the
application package path. This class must extend android.app.Activity, which is
the base implementation of an activity in the Android platform.

theme

Android features a highly customizable user interface wherein you can customize
different aspects of the UI by overriding platform style values using XML files. This
tag allows developers to specify a style resource that describes the overall visual
design for the activity. Android will apply the style automatically to the activity as
it is created.

50 | Chapter 3: Android Fundamentals

configChanges

Android manages configuration changes for you. Some of the scenarios treated as
configuration changes in Android include rotating the device to change orientation,
changing device, Subscriber Identification Module card (SIM card), and so on. The
default behavior of Android is to recreate the activity in this scenario. However,
there may be times when you wish to manage configuration changes as part of your
app. You can do this by specifying a list of configuration parameters in the value of
this attribute. For all the parameters specified in this list, Android will pass on the
information to the activity itself, by calling the onConfigurationChanged() meth‐
od. You may override this method to perform application-specific logic.

An example for this tag is as follows:

android:configChanges = "orientation|keyboardHidden|keyboard|screenSize|locale"

In this sample, the activity will be notified of a configuration change every time the
device orientation or language changes.
exported

Specifies whether this activity can be launched by external components within the
device.

hardwareAccelerated

Specifies whether a hardware-accelerated OpenGL renderer is available for ren‐
dering the activity. The rendered graphics are smoother and optimized for visual
performance. However, this may cause additional CPU consumption. If enabling
this mode for you activity, you should thoroughly test your activity to make sure
no side-effects are introduced, as not all 2D operations are perfectly supported by
Android.

icon

An icon to be used for representing the activity.

label

A human-readable name for the activity. This is displayed to the user when the
activity is being rendered on the screen.

launchMode

This flag informs Android as to how an activity must be launched, as in whether
Android should recreate or reuse an existing activity upon receiving a request from
the user. Available modes range from Android creating a new activity for each
request or using a single instance of the activity for all requests.

screenOrientation

Specifies the supported screen orientations for the activity. Developers can use this
attribute to switch the screen orientation to a specific mode.

Activity | 51

windowSoftInputMode

Specifies the nature of the soft keyboard and whether it is visible with respect to an
activity.

Intents
Android, like many other mobile operating systems, is based on the notion of cooper‐
ative computing. One of the key aspects of this architectural approach is to allow soft‐
ware components within or across the app to work with each other in a complementary
manner. An intent is an expression of request or a notification by a requesting compo‐
nent to the Android framework asking it to locate the best suitable component to service
the request.

Intents play a critical role in Android’s messaging framework and allow communication
between, within, or across applications. Using the intent framework, the recipient of the
message can be notified about something that has happened; for example, a system event
or requesting the recipient to take some action such as showing the contact list.

An intent object can contain supplementary information necessary for the recipient
application to decipher the message and take appropriate action.

Intents can either be broadcasted or targeted to a specific component within an appli‐
cation. Intents that are broadcasted are resolved by Android based on the match and
the priority associated with the intent receivers. However, when targeted toward a spe‐
cific component, Android simply passes on the message/notification to the component
specified in the component object of the Intent.

Let’s look at the structure of intent in a bit more detail:
action

A string value specifying the request to be performed.

data

Specifies the data on which this request has to be performed.

type

Specifies the mime type of data being passed in the intent.

category

Provides additional information about the action to be executed. In Android, you
can have multiple components that can service the same action request, however,
you may want to use these components in specific scenarios. category enables you
to do just that. A category for an intent allows you to specify an additional attribute
to your request, which can then be used by Android to dispatch the request to the
right service module.

52 | Chapter 3: Android Fundamentals

Intent Resolution
The process of delivering an intent to a target application is referred to as intent reso‐
lution. As described earlier, there two forms of intent you will end up using explicit and
implicit.

The resolution in the case of explicit intent, is fairly straightforward, as you specify the
component to which the concerned intent needs to be delivered. In Android, you can
specify this intent by using the setComponent(ComponentName) or setClass(Context,
Class)) method. A very common use of this approach is to launch internal application
activities.

Implicit intents on the other hand are sent to the system as requests and must carry
enough information within them for the system to determine the component that can
service the intent. If there are more than one component that can service this type of
intent, then Android passes the intent to the component either with the highest priority
or the one selected by the user via a list of options.

Intent Filter
Intent filters are used to declare serviceable intents in Android. This information is then
used by Android to search the right serving component for implicit intents. Any appli‐
cation component such as an activity, service, and so on, can declare its support for
handling a specific intent by using the intent-filter tag within its manifest
declaration.

The application component can accept an incoming intent by filtering on any or all of
the following three components of an intent:
action

String containing the supported action or the event that has occurred

category

String containing additional information describing the supported categories of the
intent

data

The URI and mime type of the data that is supported by the application component

An example of an intent-filter tag is as follows:

<intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

The intent filter specified here would enable an activity to be listed in the device’s ap‐
plication list as a launch point for the application.

Intent Resolution | 53

An intent fileter specifies the types of intents that an activity, service, or broadcast re‐
ceiver can respond to. It declares the capabilities of its parent component—what an
activity or service can do and what types of broadcasts a receiver can handle. It opens
the component to receiving intents of the advertised type, while filtering out those that
are not meaningful for the component.

<intent-filter
 android:icon="drawable resource"
 android:label="string resource"
 android:priority="integer" >
 . . .
</intent-filter>

Services
The Android framework offers an application component to start and maintain back‐
ground operation while the application is not in the foreground. This helps facilitate a
better user experience for our application. This mechanism is known as a service.

The background service can be declared in the Android manifest using the service tag.
The name of the Java class that extends the Service class must be provided using the
android:name attribute within the tag.

The manifest can also be used to indicate whether the service should be started within
the same process as the application or in a different process. By default, the service is
started within the same process as the application and runs within the main thread of
the application.

An example of the service tag is as follows

<service android:name=".ExampleService" />

Since the default behavior of the service is that it will be run in main
UI thread of the application, make sure no time consuming or block‐
ing tasks are performed within the service. If there is a need for such
a task, it would be wise to spawn a thread from the service and use that
thread for blocking tasks.

Broadcast Receiver
A broadcast receiver is a component provided by the Android framework to support
receiving intents by the application. The broadcast receiver, if declared within the man‐
ifest, would enable the intents to be received even if the application is not running.

The broadcast receiver can be declared in the manifest using the receiver tag.

54 | Chapter 3: Android Fundamentals

The name of the Java class that extends the BroadcastReceiver class should be declared
with the android:name attribute within the element.

The targeted intents that can be processed by the receiver can be filtered using the
intent-filter tags as described earlier.

An example of a broadcast receiver to handle system boot event is as follows:

<receiver android:name=".BootReceiver"
 <intent-filter>
 <action android:name="android.intent.action.RECEIVE_BOOT_COMPLE
TED" />
 </intent-filter>
</receiver>

Listening for a boot completed event using the broadcast receiver in the
manifest is the recommended way to start an application when the
device boots up. This is not suitable for all applications; only essen‐
tial applications that need to run all the time.

Specifying Compatible Device Configuration
An Android manifest allows an application to specify the list of hardware configurations
that is needed to run properly. For example, an application might require a qwerty hard
keyboard. This mechanism ensures that the application is not installed on devices
without support for the required features.

The required features can be listed using the uses-configuration tag. Multiple use
configuration tags can be used to list different combinations of system features that the
application can support.

An example of a system requirement tag is as follows:

<uses-configuration
 android:reqHardKeyboard="true"
 android:reqKeyboardType="qwerty" />

Declaring Needed Device Features
In addition to the overall device configuration described previously, an application
might require other hardware features for it to function properly. For example, the
location feature would be required for a navigation application.

These types of individual feature requirements can be listed in the Android manifest
using the uses-feature tag.

An example of the feature requirement listing in the application manifest is as follows:

Specifying Compatible Device Configuration | 55

<uses-feature
 android:name="android.hardware.location.gps"
 android:required="true" />

The android:required attribute is used to indicate whether the application should not
be installed on a device if the feature is not supported.

The default value for this flag is true and so it needs to be explicitly set to false if the
application can run without issues even if the feature is not available.

The Google Play store will filter the application for the target device
based on the uses-configuration and uses-feature tags and the
android:required attribute in each tag. Developers should employ
these settings carefully to ensure that the application is not filtered
incorrectly.

Permissions
Any application that wants to access privileged information such as contacts or various
hardware components, such as the SD card or camera, must declare their usage in the
application manifest.

The Android application installer (PackageManager) uses this declaration to alert the
user about the access permissions that the application is requesting.

The permissions can be listed in the manifest using the uses-permission tag.

An example of uses-permission declaration is as follows:

<uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION" />

SDK Version
Since there are multiple versions of the Android SDK available in the market at any
given time, the application developer can use the Android manifest to target the appli‐
cation to a particular version of the SDK as the primary one.

The uses-sdk tag can be used for declaration of the information about the SDK versions.
The primary version of the SDK can be set using the android:targetSdkVersion
attribute.

The application can also specify a minimum version of the SDK below which the ap‐
plication is not expected to support. The android:minSdkVersion attribute of the uses-
sdk can be used to declare this.

An example of the uses-sdk declaration is as follows:

56 | Chapter 3: Android Fundamentals

<uses-sdk
 android:minSdkVersion="5"
 android:targetSdkVersion="11"/>

Even though the maxSdkVersion attribute can be set in the Android
manifest using the SDK version tag, it’s a bad idea, as it could cause
the application to be uninstalled if a system update upgrades the de‐
vice OS version to a newer version.

Hands-on Coding: Hybrid Hello World! Application
In this section, we will build a sample application wherein the UI is implemented in
HTML and rendered using a WebView. To get started, create a sample project using
Eclipse or on the command line.

$ mkdir helloworld
$ cd helloworld
$ android create project -n HelloWorld -p ./ -t \
 android-14 -k com.helloworld --activity MainActivity

Once you execute the commands, an empty native Hello World application will be cre‐
ated for you. Change the AndroidManifest XML to include the INTERNET permission:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.helloworld" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application
 android:icon="@drawable/icon"
 android:label="HelloWorld" >
 <activity android:name="com.helloworld.MainActivity" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>

</manifest>

Next, we will modify the layout resource file to specify a WebView in the view hierarchy.
This layout resource will be set as a content view in the MainActivity class of the ap‐
plication.

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

Hands-on Coding: Hybrid Hello World! Application | 57

 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:orientation="vertical" >

 <WebView
 android:id="@+id/WebView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" />

</LinearLayout>

Open the MainActivity.java file, and change the code as follows:

package com.helloworld;

import com.helloworld.R;
import android.app.Activity;
import android.os.Bundle;
import android.WebKit.WebView;

public class MainActivity extends Activity {

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 // Set the content view for the activity as the 'main' layout
resource.
 // Calling this API will cause the resource to be inflated and
view
 // hierarchy to created and associated with the activity.
 setContentView(R.layout.main);

 // Since our modified layout resource file contains a WebView,
 // find the instance of it for us to process it further.
 WebView webView = (WebView) findViewById(R.id.WebView);

 // Enable JavaScript
 webView.getSettings().setJavaScriptEnabled(true);

 // Load the entry point page into the webView.
 webView.loadUrl("file:///android_asset/index.html");
 }
}

Now let’s look at the sample HTML page that will be rendered by the application.

<!DOCTYPE html>
<html>
<head>
<meta name="viewport" content="width=device-width,
 initial-scale=1.0,
 user-scalable=0,
 minimum-scale=1.0,

58 | Chapter 3: Android Fundamentals

 maximum-scale=1.0">
<title>Hello World</title>
<style>
* {
 -webkit-tap-highlight-color: rgba(0, 0, 0, 0);
}

html {
 height: 100%;
}

html, body {
 margin: 0;
 padding: 0;
 overflow: hidden;
 -webkit-text-size-adjust: none;
 -webkit-user-select: none;
}

body {
 font-family: Helvetica, Arial, sans-serif;
 font-size: 100%;
 width: 100%;
 height: 100%;
}

article {
 display: -webkit-box;
 width: 100%;
 height: 100%;
 -webkit-box-orient: vertical;
}

article section.view {
 display: -webkit-box;
 width: 100%;
 height: 100%;
 -webkit-box-orient: vertical;
 -webkit-box-align: center;
 -webkit-box-pack: center;
}
</style>
</head>
<body>

<article>
 <section class="view">Hello world!</section>
</article>

</body>
</html>

Hands-on Coding: Hybrid Hello World! Application | 59

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Once you have made the changes in the files, compile and deploy the app using an
emulator or device. Voila!, you have your first hybrid application on Android, shown
in Figure 3-3.

Figure 3-3. Hybrid “Hello World” application

60 | Chapter 3: Android Fundamentals

CHAPTER 4

WebView, WebKit, and WebSettings

In this chapter, we will be introducing the WebView control and its capabilities. Web‐
View in Android is a wrapper around the WebKit rendering engine, and can be used to
display web pages inside your application. As a developer, you can use this control to
render any web page as part of your application. These pages can be local or can be
consumed from the Web. We will be using the WebView control to host our hybrid
application. Although WebView itself is very powerful, the current API support is re‐
stricted by various specifications from standards governing bodies and individual or‐
ganizations. Hence, it is often necessary to extend the API set to allow hybrid applica‐
tions to access to platform capabilities.

The WebView as a Web Browser
A WebView is often used to load HTML content within a native application. The Web‐
View enables you to embed a web browser, which does not have any chrome (browser)
controls including window frames, menus, toolbars and scroll bars into your activity
layout.

The WebView is capable of displaying online or offline web content within its layout
using HTML5, JavaScript, and CSS technologies. It also includes standard browser fea‐
tures like history, zooming, JavaScript, rendering CSS, and so on.

The most common implementation is to facilitate advertisement loading from remote
servers. WebView often comes in handy for rendering complex UI views. One good
example is the Facebook and LinkedIn applications wherein the news feed is rendered
using the WebView control.

61

For those of you who wish to dig deeper on the subject of WebView
and its integration within Android, we recommend you to have a look
at WebView.java located in the frameworks project in base/core/Java/
android/WebKit. In summary, you will notice that WebView is just a
wrapper view, which holds the handle to the canvas on which Web‐
Kit can operate. For almost everything else, it is a pass through to a
controller module that manages user interactions, user data, and web
requests.

So What Is WebKit?
WebKit is a rendering engine library to render web pages in view and windows. It also
features a framework to interact with user events such as following links on user clicks.
WebKit has become the de facto standard for web browser engines on mobile devices.

WebKit applications behave as you would expect. The WebKit conveniently creates and
manages all the views needed to handle different MIME types. When the user clicks on
a link in a page, the WebKit automatically creates the views needed to display the next
page. For more details on WebKit, please refer to the WebKit website.

WebKit is a part of the libraries layer in the Android platform architecture. To get more
information about WebKit on Android, read Joe Bowser’s Android WebKit Develop‐
ment - A Cautionary Tale Presentation 1.

Since the Webkit is an open source browser engine, each mobile OS
manufacturer might maintain a different version of WebKit. For ex‐
ample, WebKit in an iOS device is different from in an Android de‐
vice. Check your WebKit HTML5 capabilities by visiting the html5test
website; here you’ll find the available HTML5 APIs as well as CSS3
support.

Requesting Internet Permission from Android Manifest
In case, you want to load a URL in the WebView, you need to declare a uses-
permission element just above the <application> … </application> element in the
AndroidManifest.xml file. In Chapter 3, the necessary application-specific permissions
are explained in detail.

<?xml version="1.0" encoding="utf-8"?>
<manifest ... >
 <uses-permission android:name="android.permission.INTERNET" />
 <application> ... </application>
 ...
</manifest>

62 | Chapter 4: WebView, WebKit, and WebSettings

http://goo.gl/MczY2
http://goo.gl/j6m2q
http://goo.gl/j6m2q
http://goo.gl/brini
http://goo.gl/brini

Instantiating and Accessing the WebView Control
A layout denotes the visual structure of an application screen. To use a WebView in your
application, we need to add the WebView control to the view hierarchy of the applica‐
tion. This can be done in one of two ways:

• Using the XML-based layout files
• Programmatically

The XML way is preferred for many developers because it is not only easy to write but
also because it can be done visually using the Eclipse XML Graphical Layout Editor. To
add a WebView in a view hierarchy, add the following XML tag in your layout’s XML.

<WebView xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/WebView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent" />

A view created this way will be inflated (instantiated) by Android upon a user’s call to
setContentView() API. You can obtain handle to the WebView as you do with other
views using the findViewById() API.

WebView webView = (WebView) findViewById(R.id.WebView);

Alternatively, you can create an and add a WebView to the application view hierarchy
programmatically, as follows:

WebView WebView = new WebView(this);
contentView.addView(webView);

Loading a Web Page
Once you have a created a WebView control, you can request it to load a web page by
using the loadURL() API passing the requested URL in the function argument. Web‐
View supports loading resources from the Web or locally from the assets or resource
folder.

• Root path to the asset folder in Android is file:///android_asset
• Root path to the res folder in Android is file:///android_res

Please note, that the url is file:///android_asset and not file:///
android_assets. This is one of the most common mistakes made by
developers during development.

Instantiating and Accessing the WebView Control | 63

file:/// simply denotes that you wish to access the local filesystem, and
points to the root directory. Anything mentioned after this is the rel‐
ative path to the resource we would like to load in the WebView. Hence,
when the URL is of the form file:///android_asset, we are specifying
the base URL for the path to the asset folder for the application package.

// load index.html from the assets folder
WebView.loadUrl("file:///android_asset/index.html");

// load logo.png from the res folder
WebView.loadUrl("file:///android_res/drawable/logo.png");

// load a web based URL, Oreilly's homepage in this case
WebView.loadUrl("http://www.oreilly.com");

Loading HTML into WebView
You can request the WebView to render any valid HTML as a string using the loadDa
ta() method.

Let’s look at the loadData() API in a bit more detail:

loadData(String data, String mimeType, String encoding)

data specifies the data to be loaded, HTML markup in our case, into the WebView using
the data URL scheme. The data URL scheme allows us to include data inline in web
pages as if they were external resources. Using this technique, we can load normally
separate elements such as images and stylesheets in a single HTTP request rather than
multiple HTTP requests.

mimeType will denote the data type, which will be text/html.

The encoding parameter specifies whether the data is base64 or URL encoded. If the
data is base64 encoded, the value of the encoding parameter must be base64. For all
other values of the parameter, including null, it is assumed that the data uses ASCII
encoding for octets inside the range of safe URL characters.

String data = "<!DOCTYPE html>";
data += "<head><title>Hello World</title></head>";
data += "<body>Welcome to the WebView</body>";
data += "</html>";
// args: data, mimeType, encoding
WebView.loadData(data, "text/html", "UTF-8");

the above API will be used to create a data URL of the form data:[<MIME-type>]
[;charset=<encoding>][;base64],<data> before it is loaded inside the WebView.

64 | Chapter 4: WebView, WebKit, and WebSettings

If you would like to reference a file from an arbitrary source like the
res/drawable directory within your HTML documents, using some‐
thing like:

// Bad example
String data = "<!DOCTYPE html>";
data += "<head><title>THIS WILL NOT WORK</title></head>";
data += "<body><img src=\"file:///android_res/drawable/logo.png
\" /></body>";
data += "</html>";
WebView.loadData(data, "text/html", "UTF-8");

This code will not load the logo.png image, as JavaScript’s same origin
policy restricts all the resources on the web page to originate from the
same site—in this case, data:[<MIME-type>] and not file:///, as we have
requested.
To avoid this restriction, Google recommends using loadDataWithBa
seURL() with an appropriate base URL, which is used both to resolve
relative URLs and when applying JavaScript’s same origin policy.

WebViewClient
Android’s WebView is extensible and implements a number of delegatory classes in‐
cluding WebViewClient and WebChromeClient, which can be used by developers to
customize the default behavior of WebView and inject data in the request/response call
flows.

WebViewClient is a class that the WebView refers to before it handles everything that,
in some way, is related to the rendering of a page. Using this class, you can add callback
methods that are invoked to inform you of changes in the rendering.

These callbacks include:

• Start and stop loading of web requests
• Whether the browser should load specific resources
• Notify errors, login requests, and form resubmissions

Android WebView has a default implementation of the WebViewClient, which can be
overridden by the default delegate using the setWebViewClient() method of the Web‐
View.

webView.setWebViewClient(new WebViewClient(webView) {
 // override all the methods
});

WebViewClient | 65

WebChromeClient
WebChromeClient is also a delegate class, responsible for everything browser UI spe‐
cific, unlike the WebViewClient, which is responsible for everything that is related to
the rendering of the web content.

The WebChromeClient lets you handle the browser’s visited history, create new win‐
dows, take care of alerts, prompts, and console messages. A simple application with no
requirements on the integration will be fine without overriding the default WebChro‐
meClient delegate. You can specify your own delegate using the setWebChrome
Client() method of the WebView.

webView.setWebChromeClient(new WebChromeClient(webView){
 // override all the methods
});

Loading Local Files into the WebView
Android WebView provides a very flexible set of APIs to load documents from multiple
sources. However, you may have to tweak the behavior of the WebView in certain cases,
as the same origin policy would restrict the locations from which the content can be
loaded within the web browser—for example, loading a local file on the filesystem.

In the following sections, we will look at some of the techniques you can use to allow
the web browser to load content from multiple sources.

Load local files from res/drawable into the WebView with a given base URL:

String html = "<!DOCTYPE html>";
html += "<head><title>Loading files from res/drawable directory</title></head>";
html += "<body>/body>";
html += "</html>";
WebView.loadDataWithBaseURL("file:///android_res/drawable/", html, "text/html",
"UTF-8", null);

Load local files from an SD card into the WebView without a given base URL:

String base = Environment.getExternalStorageDirectory().getAbsolutePath()
 .toString();
String imagePath = "file://"+ base + "/logo.png";
String html = "<!DOCTYPE html>";
html += "<head><title>Loading files from SDCard</title></head>";
html += "<body>/body>";
html += "</html>";
WebView.loadDataWithBaseURL("", html, "text/html","UTF-8", null);

66 | Chapter 4: WebView, WebKit, and WebSettings

One important thing to note is that the previous solution is support‐
ed only in API Level 2.2 and above. If you are using an API level lower
than 2.2, an alternative solution can be executed by reading the file
into a string buffer explicitly.

Load local files into the WebView by reading the contents of the file in Java and then
passing the data to the WebView:

// Load an html file
String html = loadFileFromSDCard("file:///sdcard/oreilly/book/logo.png");
WebView.loadDataWithBaseURL("", html, "text/html", "UTF-8", null);

or:

// Load an image file
String pngData = loadFileFromAssets("file:///android_asset/images/logo.png");
WebView.loadData(pngData, "image/png", "UTF-8");

Load Flash Files into the WebView
In order to load flash files from SDCard into the view, you can link your flash files in
the embed tag using file:/// protocol.

<!-- flash.html -->
<html>
 <head>
 <title>Playing Flash movie</title>
 </head>
 <body>
 <object width="200" height="200">
 <param name="movie" value="hybrid.swf">
 <embed src="file:///sdcard/hybrid.swf" width="200" height="200"></embed>
 </object>
 </body>
</html>

Then, you need to load your flash.html file from SDCard using the loadUrl() method.

String base = Environment.getExternalStorageDirectory().getAbsolutePath().to
String();
String html = "file://" + base + "/flash.html";
if (Environment.getExternalStorageState().equals(Environment.MEDIA_MOUNTED)) {
 WebView.loadUrl(html);
}

Reading Files from the res/raw Directory
If you need to read a file (e.g., home.html) from the res/raw directory and display it in
the WebView, you need to pass the resource ID (e.g., R.raw.home) to your reader func‐
tion in order to get it as string.

Load Flash Files into the WebView | 67

WebView.loadData(getRawFileFromResource(R.raw.home), "text/html", "UTF-8");

private String getRawFileFromResource(int resourceId) {
 StringBuilder sb = new StringBuilder();
 Scanner s = new Scanner(getResources().openRawResource(resourceId));
 while (s.hasNextLine()) {
 sb.append(s.nextLine() + "\n");
 }
 return sb.toString();
}

Triggering JavaScript Functions from the Java Layer
A key aspect of an hybrid application would be its ability to allow native code to call
JavaScript APIs, for delivering data, callbacks, and events. Since, there is no direct API
for this in WebKit, developers often use the loadUrl() function for this purpose. The
loadURL() function requests the WebView to load and execute the specified URL.

If you recall the structure of a URL, it looks something like:

 scheme: [hostaddress][params]
 | | | |
 |protocol| optional | |
 -------- |address for | |
 | service | |
 -------------- params|

The protocol can be any valid scheme as long as there is either a valid default handler
registered in WebKit for that scheme or your application serves this scheme. Examples
for protocol would be http, https, ftp, JavaScript, or karura (karura://karura.js)—in our
case, identifying our declared protocol scheme.

The JavaScript protocol is of special interest to us for this topic. The syntax for the
JavaScript protocol is JavaScript:sScript.

This protocol scheme is used to specify a sequence of JavaScript statements to be exe‐
cuted by the JavaScript engine within the browser context. This is often handy in spec‐
ifying event handlers for UI controls within the web page. When a browser engine is
requested to browse to a JavaScript URL, it will execute the accompanying JavaScript
without reloading the DOM. This is a very important feature in modern web browsers.
We will use this design pattern to pass parameters from Java across to JavaScript. This
is how it is done:

1. Create a string buffer to represent the JavaScript that you wish to call.
2. Prepend the JavaScript protocol scheme to this string.
3. Call loadURL(), passing the string as the argument.

68 | Chapter 4: WebView, WebKit, and WebSettings

For example, if we wish to display an alert dialog in the WebView, as a result of some
Java code execution, we would write something like:

String js = "alert('Alert from Java');";
WebView.loadUrl("JavaScript:" + js);

Opening a WebView in Fullscreen Mode
At times, you may want to display a fullscreen WebView to the user. Although you can
request the WebView to cover the entire activity, by default, the activity does not cover
the full screen, and you will observe a title bar and a notification bar. You can make an
activity a fullscreen activity by either specifying activity flags in the manifest file or by
doing it programatically.

Make an activity full screen through AndroidManifest.xml:
<?xml version="1.0" encoding="utf-8"?>
<manifest ... >
 <activity
 android:theme="@android:style/Theme.NoTitleBar.Fullscreen" >
 ...
 </activity>
</manifest>

Or make an activity fullscreen programmatically:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 requestWindowFeature(Window.FEATURE_NO_TITLE);
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 setContentView(R.layout.main);
 ...
}

When you set your activity to fullscreen mode, the resize event is not
fired when the soft keyboard comes out in the WebView. We have done
numerous experiments to capture the resize event from JavaScript,
but with no luck. This could be Android limitation or a bus. This issue
has been raised to Android developers at Google. The alternative sol‐
ution of how to mitigate this issue is addressed in the next section.

Enabling a Resize Event in JavaScript While Your
Application Is Fullscreen
To enable a resize event while your application is fullscreen, do the following:

Opening a WebView in Fullscreen Mode | 69

• Use the res/values/styles.xml file to make your application fullscreen and turn off
the window title.

<?xml version="1.0" encoding="utf-8"?>
<resources>

 <style name="Theme" parent="android:Theme.Light">
 <item name="android:textViewStyle">@style/Theme.TextView</item>
 <item name="android:windowTitleStyle">@style/WindowTitle</item>
 <item name="android:windowContentOverlay">@null</item>
 <item name="android:windowNoTitle">true</item>
 </style>

 <style name="WindowTitle" parent="@android:style/Theme">
 <item name="android:textSize">10sp</item>
 <item name="android:textColor">@android:color/white</item>
 </style>

 <style name="Theme.TextView" parent="@android:style/Widget.TextView">
 <item name="android:textSize">10sp</item>
 <item name="android:textColor">@android:color/black</item>
 </style>

</resources>

• Apply this theme to your application using the following XML attribute in your
manifest.

<application
 android:icon="@drawable/icon"
 android:label="Demo"
 android:theme="@style/Theme" > ... </application>

• You can now capture the resize event in your HTML.

$(window).bind('resize', function() {
 console.error('onResize');
});

Binding Java Objects to WebView Using the
addJavaScriptInterface() Method
The WebView allows developers to extend the JavaScript API namespace by defining
their own components in Java and then making them available in the JavaScript envi‐
ronment. This technique comes in handy when you wish to access a platform feature
not already available in JavaScript or wish to consume a component written in Java
through JavaScript.

70 | Chapter 4: WebView, WebKit, and WebSettings

The addJavaScriptInterface() method of the WebView can be used for this purpose.

JavaScriptInterface JavaScriptInterface = new JavaScriptInterface(this);
myWebView = new MyWebView(this);
myWebView.addJavaScriptInterface(JavaScriptInterface, "HybridNote");

In this example, JavaScriptInterface is bound to the JavaScript environment of Web‐
View and is accessible using the HybridNote object (aka namespace). Depending upon
the Android version, either all public or some special methods of the bound objects will
be accessible inside the JavaScript code. Once the object is added to the WebView using
the function specified earlier, the object will be available to JavaScript only after the page
in the WebView is loaded next or the existing page is reloaded. This can be achieved by
calling the loadData() function of the WebView object.

Although addJavaScriptInterface() is powerful for building hy‐
brid apps, using this method presents a wide range of security issues
because the same-origin policy (SOP) does not apply to this method,
and third-party JavaScript libraries or an untrusted child iframe from
a different domain may access those exposed methods in the Java layer.
As a result of this, attackers can take advantage of an XSS vulnerabil‐
ity and execute native code or inject malicious code into your appli‐
cation.

From the JavaScript layer, all the public methods of the exposed Java objects can be
accessed in Android versions below Jelly Bean MR1 (API Level - 17). For Jelly Bean
MR1 API Level and above, exposed functions should specifically be annotated with
@JavaScriptInterface to prevent any unwanted methods from being exposed.

The JavaScript layer does not have direct access to the exposed Java object’s fields. If
needed, explicit getters and setters must be provided for accessing the fields.

@JavaScriptInterface Annotations
If you set your targetSdkVersion to 17 (or higher) in AndroidManifest.xml all the
methods that are accessed by JavaScript must have @JavaScriptInterface annotations.

import android.WebKit.javaScriptInterface;

// SDK version 17 or above.
@JavaScriptInterface
public void showToast(String toast) {
 // show toast...
}

In Android 2.3, the addJavaScriptInterface() method does not work as expected.
However, given 2.3 is still the most used version of Android, you may want your appli‐
cation to work on 2.3 devices as well.

Binding Java Objects to WebView Using the addJavaScriptInterface() Method | 71

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Developers across the Web have come up with a number of workarounds to take care
of this. You can find one such implementation at Android 2.3 WebView’s broken Add‐
JavascriptInterface website.

Another approach is to use an onJsPrompt() callback. Wherein the message or the
defaultValue parameter can be used to pass the name of the method to be executed in
the native environment along with params.

@Override
public boolean onJsPrompt(WebView view, String url, String message,
 String defaultValue, JsPromptResult result) {

 // Check the url to ensure that the request originated from
 // whitelisted source

 // Check to see if message or defaultValue contain JavaScript request.
 if (defaultValue.startsWith("karura:")) {
 // process the request
 } else{
 // display the confirmation dialog to the user if required
 }

 return trueOrFalse; // based on whether you handled the notification
}

Security Considerations for Hybrid Applications
In Android versions before 4.2 (Jelly Bean, targetSdkVersion 17), the JavaScript layer,
upon getting access to the exposed Java object, can access all of the object’s public mem‐
bers using reflection. Reflection is a powerful set of APIs, commonly used by programs
that require the ability to examine or modify the runtime behavior of applications run‐
ning in the Java Virtual Machine.

For platforms before API level 17, you can use reflection inside of JavaScript by calling
something like:

function execute(cmdArgs) {
 boundObj.getClass().forName("Java.lang.Runtime").getMethod("getRuntime",
 null).invoke(null,null).exec(cmdArgs);
}

var p = execute(["/data/data/com.yourapp/malicious-app"]);
document.write(getContents(p.getInputStream()));

This could allow an attacker to run malicious Java code in the host application’s context,
which could pose a security risk.

As an application developer, care must be taken to ensure that we expose the Java object
to WebView only as necessary, especially in the case of running JavaScript from un‐
trusted sources such as external websites and so on.

72 | Chapter 4: WebView, WebKit, and WebSettings

http://goo.gl/EICOa
http://goo.gl/EICOa

For increased security, you should also load all the external JavaScript files over the
Secure Sockets Layer (SSL) protocol. Any exceptions to this should be explicitly re‐
viewed and approved by you.

HttpOnly Cookies and the Secure Flag
Cookies are one of the most common ways developers store application data. Among
other things, it is used to remember the state of the web application in the previous run.
Access to this data by untrusted JavaScript could pose a huge risk to your application.
To prevent this, you can make your cookies HttpOnly in the HTTP response.

The HttpOnly cookie flag became a standard with the RFC #6265 document that can
be found at the ietf.org website.

An HttpOnly flagged cookie cannot be stolen easily via non-HTTP methods, such as
JavaScript or Flash using document.cookie as a pervasive attack technique.

Here’s an example of how the HttpOnly attribute is visible in the HTTP headers:

HTTP/1.1 200 OK
Content-Type: text/html; charset=utf-8
Set-Cookie: id=cdb6352b48e62e0691efe552e3e4cecb; path=/; HttpOnly

If you use the SSL protocol for delivering your web content and need to set cookies using
JavaScript, then you need to enable the secure flag in your cookie function in order to
set a secure cookie.

document.cookie = "name=value; expires=date; path=path; domain=domain; secure";

On the Android developer website, there are great tips about Web‐
View security. For additional information, please refer to the An‐
droid WebView API website.

Domain Whitelisting
You can create an allowed list of domains that WebView can view if your application
needs to navigate to domains outside the expected domain. Just use the shouldOverri
deUrlLoading(WebView view, String url) method:

@Override
public boolean shouldOverrideUrlLoading(WebView view, String url) {
 if (!Uri.parse(url).getHost().equals("www.oreilly.com")) {
 return false;
 }
 view.loadUrl(url);
 return true;
}

HttpOnly Cookies and the Secure Flag | 73

http://goo.gl/RRHSC
http://goo.gl/xJTvO
http://goo.gl/xJTvO

However, restricting loading remote resources within the shouldOver
rideUrlLoading(WebView view, String url) method does not in‐
tercept the requests that are made from IFRAME, XmlHttpRequests
Ajax Object, and SRC attributes in HTML tags.

A solution to the problem mentioned in the Warning would be to intercept the request
and manually load different content into this view.

@Override
public WebResourceResponse shouldInterceptRequest(WebView view, String url) {
 if (url.contains(".js")) {
 String str = "alert('This is a replaced JavaScript code.')";
 InputStream is = null;
 try {
 is = new ByteArrayInputStream(str.getBytes("UTF8"));
 } catch (UnsupportedEncodingException e) {
 e.printStackTrace();
 }
 String type = "application/JavaScript";
 return new WebResourceResponse(type, "UTF-8", is);
 }
 return super.shouldInterceptRequest(view, url);
}

Configuring WebView Settings with WebSettings
WebView in Android, provides a very comprehensive configuration interface, WebSet
tings, which can be used to customize the behavior of the WebView at runtime. The
WebSettings object is valid only during the lifecycle of a WebView. In other words, an
IllegalStateException will be thrown if you try to access any method from a Web
View.getSettings() object if a WebView is already destroyed.

You can retrieve WebSettings with WebView.getSettings() API.

WebView WebView = new WebView(this);
WebSettings settings = WebView.getSettings();

Preventing Local Files from Being Loaded in the WebView
The setAllowFileAccess() API allows developers to control access to local files by the
WebView. This API is one of several WebView settings you can configure at runtime.
By default, this setting is enabled for accessing files in the filesystem. This setting does
not restrict the WebView to load local resources from the file:///android_asset (assets)
and file:///android_res (resources) directories. For security reasons, if your app does not
require access to the filesystem, it is a good practice to turn this setting off.

settings.setAllowFileAccess(false);

74 | Chapter 4: WebView, WebKit, and WebSettings

Enabling JavaScript
For security reasons, JavaScript is disabled in the WebView by default. You can enable/
disable JavaScript using setJavaScriptEnabled() method.

settings.setJavaScriptEnabled(true);

We suggest that you always include all the JavaScript libraries in the
assets directory of your application within your hybrid app.
If you are using third-party JavaScript libraries in your application,
eventually, your application will inherit all the bugs and vulnerabili‐
ties that may cause undesired situations for your application. Some
developers prefer downloading third-party JavaScript from their own
web servers to mitigate the risks of being hacked. This allows them to
react more quickly than others in removing the malicious code from
the web server.
Again, ideally, you should deliver all your JavaScript files within your
application.

Turning on some of the WebView settings unnecessarily may result in unexpected be‐
havior in your application. Hence, it is a good practice to turn off features not required
by your application.

For example, if you are not using a Flash plug-in, turn it off using the setPlugin
State(PluginState.OFF) method, which may prevent attackers from compromising
your app via third-party plug-ins.

WebView WebView = new WebView(this);
WebSettings settings = WebView.getSettings();
settings.setPluginState(PluginState.OFF);

We encourage you to read the following research papers published by
Syracuse University in New York:
Visit the “Attacks on WebView in the Android Systems” article.
Visit the “Touchjacking Attacks on Web in Android, iOS, and Win‐
dows Phone” article.

As an Android developer, you should always follow the best practi‐
ces of different remediation and mitigation strategies for your mobile
app.

Enabling JavaScript | 75

http://goo.gl/LyPev
http://goo.gl/i89Sn
http://goo.gl/i89Sn

Setting Default Font Size
By default, the WebKit renders and displays fonts in 16 sp (scale-independent pixels)
unit. This unit enables WebView to adjust the font size for both screen density and the
user’s preference. If you would like to change the font size to something other than the
default size, you can use the setDefaultFontSize() method with the preferred font
size value.

WebView WebView = new WebView(this);
WebSettings settings = WebView.getSettings();
settings.setDefaultFontSize(20);

Zoom Controls
Setting the setBuiltInZoomControls() method to false will prevent the built-in zoom
mechanisms. Setting this to true will allow the setDisplayZoomControls() method to
show onscreen zoom controls. setDefaultZoom(ZoomDensity.FAR) sets the default
zoom density of a web page. Setting its value to FAR makes it appear in 240 dpi at 100%.
setSupportZoom() with false value will set whether the WebView should support
zooming using its onscreen zoom controls and gestures or not.

From the user experience perspective, turning off zooming for the most of the mobile
apps will be ideal for many users unless the application features require zooming.

WebView WebView = new WebView(this);
WebSettings settings = WebView.getSettings();
settings.setBuiltInZoomControls(false);
settings.setDefaultZoom(ZoomDensity.FAR);
settings.setSupportZoom(false);

Hardware Acceleration
Android uses some form of hardware accelerated drawing since version 1.0, basically,
for compositing windows. However, the local window changes are done in software.
Historically, the Android browser used a rendering technique optimized for minimizing
errors, not speed of rendering. Starting at version 3.0, Android introduced full hardware
acceleration for applications. This is not enabled by default for applications targeted for
platforms below version 4.0. The web browser itself moved to a tile-based rendering
architecture as opposed to display list architecture, which makes it more responsive.

If you wish to enable hardware acceleration in your application or activity, you can set
android:handwareAccelerated="true" in your manifest.

// enable hardware acceleration using code (>= level 11)
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 WebView.setLayerType(View.LAYER_TYPE_HARDWARE, null);
}

76 | Chapter 4: WebView, WebKit, and WebSettings

settings.setRenderPriority(WebSettings.RenderPriority.HIGH);
settings.setCacheMode(WebSettings.LOAD_NO_CACHE);

If you enable hardware acceleration for your application, make sure
you test it. Enabling hardware acceleration has side-effects, the most
important one being that it adds a significant amount of memory
requirements to your application (approx. 7-8M at minimum). This
can have huge impact on low end devices.

Given that the Android ecosystem is so heavily fragmented, it is possible that you may
observe issues with hardware-accelerated WebView. To selectively turn off hardware
acceleration for your WebView, you can either set it to android:handwareAcceler
ated="false" for the entire application or the activity hosting the WebView in the
application manifest file.

You can achieve the same effect programmatically using the following code:

// selectively disable hardware acceleration for WebView
// honeycomb (3.0) and higher
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB) {
 WebView.setLayerType(View.LAYER_TYPE_SOFTWARE, null);
}

Hardware Acceleration | 77

CHAPTER 5

Inter-workings of the JavaScript
and Java Layers

Now that we have looked at each individual piece, let’s put it all together and look at the
end-to-end architecture of a hybrid application.

Architecture of a Hybrid Application
Hybrid applications are special, bringing together best of both worlds to an extent.
Architecturally, an hybrid application would look like Figure 5-1.

A sufficiently complex hybrid application would typically contain most of the compo‐
nents identified in Figure 5-1, although not necessarily. Let’s quickly go over these com‐
ponents before we delve into more details.
WebView

A hybrid application is a primarily a web app with access to platform capabilities
through an additional set of user defined APIs. This web application requires a
WebView to render content and host the business logic.

View, model, and controller
Since the application is primarily written in JavaScript, depending upon the Java‐
Script library you use, you will have some form of implementation of model, view,
and controller components.

JS-Java Bridge
It is the glue layer that allows the native and web environments to interact with each
other. The bridge should allow for execution of synchronous and asynchronous
APIs. As was discussed in the previous chapters, this layer is one of the most crucial
layers in a hybrid application for several reasons, including performance, ease of
use, and security.

79

Figure 5-1. Hybrid application architecture

Java plug-ins
A Java plug-in is the user defined extension API that has been exposed to the Java‐
Script environment.

Native components
These are native services and components you wish to access as part of your hybrid
applications. Some of the examples include showing actionbar, native dialogs,
accessing location, and so on.

Application data
While HTML5 data storage gives us some capabilities to store data, you may often
want to store BLOBs in custom formats; this is where application data, filesystem
APIs, and native APIs come into play.

80 | Chapter 5: Inter-workings of the JavaScript and Java Layers

Assets and resources
Assets and resources contain the static artifacts that ship with your application. You
can use resources to localize text if you like.

Native business logic
One very important architectural split while designing hybrid applications is the
split for the business logic between the native and web components. Often you may
feel the need to implement part of the business logic in the native layer for several
reasons, including access to native components, additional security, or just that a
particular component you wish to link to is only available in the native layer.

Calling Java Methods from JavaScript
WebKit and the WebView allow developers to bind Java objects to JavaScript objects.
Using this bridge, the bound object can access the Java APIs from JavaScript. One im‐
portant thing to remember is that the bound JavaScript alias is a global variable, and
can be accessed anywhere within the app.

The addJavaScriptInterface() API available in the WebView can be used to bind a
Java object to a JavaScript alias at runtime. Let’s look at what happens when an object is
bound; see Figure 5-2.

Figure 5-2. Binding a Java object to JavaScript

The object binding framework available as part of Android is very flexible and powerful.
It is intelligent in the sense that it can automatically bind return objects for Java method
calls for them to be accessible in the JavaScript environment. Unlike their explicit

Calling Java Methods from JavaScript | 81

counterparts, the implicitly bound objects are anonymous objects and would be lost
unless you store an explicit reference to them in JavaScript variables.

class MyLocationProvider {
 Location getLocation();
}

 WebView.addJavaScriptInterface(myLocationProvider, "nativeLocProvider");

In the previous example, nativeLocProvider is global and can be accessed anywhere
within the JavaScript.

var location = nativeLocProvider.getLocation();

In the second example, when we call getLocation in JavaScript, the return object is
automatically bound to the JavaScript environment, however, as shown earlier we will
have to maintain a reference to the returned object to refer to it in the future.

As with any programming paradigm, the Java plug-in APIs, available through the bound
native object can be both synchronous or asynchronous. Just to put things in perspec‐
tive, a synchronous API will block the caller until it returns. An asynchronous API, on
the other hand, does not block the caller and typically will require a callback that will
be executed once the work is complete.

Synchronous APIs
The diagram in Figure 5-3 illustrates the control flow for a synchronous function.

Figure 5-3. Synchronous API execution

82 | Chapter 5: Inter-workings of the JavaScript and Java Layers

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Asynchronous APIs
Asynchronous APIs usually involve a callback function being called to inform the caller
about the status of its request, successful or otherwise. At times, multiple callbacks may
be involved depending upon the complexity; see Figure 5-4.

Figure 5-4. Asynchronous API execution

This brings us to our next topic, calling JavaScript methods from Java.

Calling JavaScript Methods from Java
Calling JavaScript methods from Java is not as straightforward as accessing a Java meth‐
od from JavaScript. JavaScript objects are not exposed in the Java layer. The way you
call a JavaScript function is by creating a JavaScript URL, which is then passed onto the
WebView for execution. There are a couple of technical fallouts of this approach. The
first being that you have to be aware of the JavaScript runtime code structure, and
second, you must ensure that the JavaScript URL has proper error handling defined as
part of the JavaScript. The JavaScript URL can be passed onto the WebView, and hence
the JavaScript environment, using loadURL() (or similar) API. Also note that the Java‐
Script receiver object has to be made addressable from the Java layer. You can do this

Asynchronous APIs | 83

by either making the scope of these variables global or by building some form of dis‐
patcher framework that can route the response to a correct receiver object.

The reasons behind this rather complex marshaling of data back from Java to JavaScript
are:

• JavaScript is single-threaded, hence, calling into JavaScript would involve marshal‐
ing the response parameters to the thread hosting the JavaScript engine.

• The JavaScript URL approach has long existed and appears to be a perfect candidate
solution for this, instead of developing a completely new API.

Routing Data to the Correct JavaScript Receiver
In the previous section, we touched upon needing a form of routing framework for
delivering responses from Java to the correct JavaScript objects. There are several ways
you can achieve this.

• If you use an existing hybrid application framework like PhoneGap, Cordova, or
Karura, then this is already done for you.

• You can use some of the existing asynchronous function framework available in
JavaScript—for example, the Deferred Object framework available in jQuery.

• Build a custom framework yourself.

Deferred Object Pattern
The Deferred Object pattern is the key pattern used by a number of JavaScript applica‐
tions for decoupling of the request from the code that handles the results of the request
and allows multiple callbacks to be attached upon notification of a result. To achieve
such a decoupling, the Deferred Object provides functions that allow the callback func‐
tions to be registered for handling the success, failure, or the progress of the request.
Deferred Object framework is available as part of the jQuery library.

Here’s how to create a deferred object in jQuery:

var deferred = $.Deferred();
// var deferred = new Deferred();
// var deferred = jQuery.Deferred();

84 | Chapter 5: Inter-workings of the JavaScript and Java Layers

Register Success Callback Using deferred.done()
The .done() function allows a callback function to be registered with the Deferred
Object. This callback function will be called once the request is successfully completed
when .resolve() is called on the Deferred Object.

deferred.done(function(data) {
 console.log("Success callback: " + data);
});

Register Failure Callback Using deferred.fail()
The .fail() function allows the registration of a callback that will be called if the request
fails with any error when .reject() is called on the Deferred Object. The function can
provide the appropriate error code and message that describes the error encountered.

deferred.fail(function(errCode, errMsg) {
 console.log("Failure callback: " + errCode + " - " + errMsg);
});

Register Progress Callback Using deferred.progress()
The .progress() function provides the option to update the caller of the progress of
the request. The callback function can be called multiple times during the lifetime of
the request while .notify() is being called on the Deferred Object. In contrast,
the .done() and .fail() callbacks are executed only once per lifecycle of the request.

deferred.progress(function(percentage) {
 console.log("Progress callback: " + percentage);
});

Simpler Callback registration with .then()
The .then() function provides a convenient way to specify the success, fail, and progress
callback functions in one place. All of the callback parameters are optional, which allows
the developer to declare the callbacks only for the functions that are of interest.
The .then() function is fired when the .resolve() or .reject() functions are called
on the Deferred Object.

The structure of the deferred.then() function is as follows:

deferred.then(successCallback, failCallback, progressCallback);

Combining the example given for .done(), .fail(), and .progress(), to use
the .then() function, we would be able to achieve an equivalent behavior as shown
here:

Register Success Callback Using deferred.done() | 85

deferred.then(function() {
 console.log("Success callback");
}, function(errCode, errMsg) {
 console.log("Failure callback: " + errCode + " - " + errMsg);
}, function() {
 console.log("Progress callback");
});

Synchronizing Multiple Asynchronous Events with
$.when()
You can also synchronize one or more events using deferred’s $.when() helper function,
as in the following example. The $.when() function waits for all its tasks to be executed,
and once supplied deferred events are resolved, depending on the events’ success and
failure states, .then() or .fail() callbacks will be fired. If one of the tasks fails,
then .fail() will be invoked.

function doThis() {
 return $.get('this.html');
}

function doThat() {
 return $.get('that.html');
}

$.when(doThis(), doThat()).then(function(data) {
 console.log("Both events are successful.");
}).fail(function(errCode, errMsg) {
 console.log("One or more events are failed.");
});

Resolve a Deferred Object
The potential of the Deferred Object is seen by allowing the success callback(s) to be
called when the request is completed successfully.

The Deferred Object can be used to invoke the success callback(s) by calling the .re
solve() function on the Deferred Object. The .resolve() function can be used to
provide the callback function(s) with the arguments that communicate the artifacts of
the request.

var deferred = new Deferred();

// register the success callback with two args
deferred.done(function(arg1, arg2) {
 alert("Success callback with two artifacts");
};
// Do some processing resulting in artifact1 and artifact2

86 | Chapter 5: Inter-workings of the JavaScript and Java Layers

 .
 .
 .
// Calling the resolve function on the Deferred Object with two artifacts as
// arguments will trigger the success callback to be called with the same.
deferred.resolve(artifact1, artifact2);

Reject a Deferred Object
Similarly, the other important usage of the Deferred Object is to notify any interested
parties to the failure of an async request.

The Deferred Object can be used to invoke the failure callback(s) by calling
the .reject() function on the Deferred Object. Similar to the success callback,
the .reject() function can be used to provide the failure callback(s) with error codes
and error messages that describe the cause of the failure.

var deferred = new Deferred();

// register the failure callback with the errorCode and errorMsg args
deferred.fail(function(errorCode, errorMsg) {
 alert("Failure callback: " +errorCode+ " & message" + errorMsg);
};
// Do some processing resulting in an error with errCode and corresponding
// error message errMsg
 .
 .
// Calling the reject function on the Deferred Object with the error code
// and err message would be passed back to the callback function(s) that
// have been registered.
deferred.reject(errCode, errMsg);

Use of Promise
A typical usage of a Deferred Object pattern would be to provide the caller of a function
with a handle to a Deferred Object. The caller can use the handle to set the callbacks
that it is interested in.

In addition, the function that created the Deferred Object would want to restrict the
ability to finalize the Deferred Object by calling .resolve() or .reject(), to only itself
or its downstream functions.

Both the requirements are supported in the Deferred Object framework by
the .promise() function. The .promise() function returns a Deferred Object that can
be used only to set the callbacks but not call the functions that could alter the state of
the object. The called function can return this to the caller, which can then set the
callback functions required upon the Deferred action completion.

Reject a Deferred Object | 87

For example, consider an Ajax request to download a web page. The call flow showing
the usage of promise is as follows:

function ajaxRequest(url) {
 var deferred = new Deferred();

 // Initiate the request to download url and pass the
 // Deferred Object to enable the downstream downloader
 // to call resolve() or reject() and progress() as necessary
 download(url, deferred);

 // Return the Deferred Promise Object to enable the
 // callbacks to be set by the caller
 return deferred.promise();
}

function caller() {
 ajaxRequest("http://oreilly.com")then(function() {
 alert("Page successfully downloaded");
 }, function(errCode, errorMsg) {
 alert("Failure Callback: " + errCode + " - " + errorMsg);
 }, function() {
 console.log("Progress update called");
 });
}

Use of deferred.progress()
In addition to using the Deferred Object to indicate success or failure of the request, it
can be used to indicate the status of the request as well. The callback function that needs
to be provided with the status update of the request can be registered using the .pro
gress() or using the third parameter of the .then() function.

To be able to update the status by calling the progress callback registered, the Deferred
Object provides the .notify() function that takes the progress update parameters as
arguments. For example, this callback can be used to update the UI elements such as
the progress bar for providing feedback to the user.

function progressBar() {
 var deferred = $.Deferred();

 var i = 0;
 var intervalId = setInterval(function() {
 deferred.notify(++i);
 if (i == 99) {
 clearInterval(intervalId);
 }
 }, 1000);

 return deferred.promise();

88 | Chapter 5: Inter-workings of the JavaScript and Java Layers

};

var promise = progressBar();

promise.progress(function(percentage) {
 console.log(percentage + "% completed");
});

The progress callback function can be called multiple times during the lifetime of the
request. In contrast, the deferred.resolve() and deferred.reject() functions are
only executed once per the lifecycle of the request.

In the following simple example, we can see the whole picture of how the Deferred
Object is used.

function requestDB() {
 // 1 - create the Deferred
 var deferred = $.Deferred();

 XMLHttpRequest xhr = new XMLHttpRequest();
 xhr.open("GET", "/api/contact", true);
 xhr.addEventListener('load', function() {
 if (xhr.readyState == 4) {
 if ((xhr.status >= 200 && xhr.status <= 300)
 || xhr.status == 304) {
 // 3a - triggers the .then() or
 // .done() callbacks
 var response = { name: "O'reilly" };
 deferred.resolve(response);
 } else {
 // 3b - triggers the .fail() callback with
 // an error code and a message
 deferred.reject(404, "File not found.");
 }
 }
 }, false);
 xhr.send();

 // 2 - return the promise right away
 return deferred.promise();
}

$.when(RequestDB()).then(function(response) {
 // 3a1 - access to returned parameters
 console.log(data.name);
}).fail(function(errCode, errMsg) {
 // 3b1 - access to fail messages
 console.log("Failure callback: " + errCode + " - " + errMsg);
});

When the requestDB() function is called by the $.when() function, there are four steps
expected to happen:

Use of deferred.progress() | 89

1. We create a Deferred Object that can then facilitate callbacks to be fired based on
the expected results from the program.

2. Once the Deferred Object is created, we return this object immediately so the con‐
sumer application can attach different utility functions, such as .done(), .then(),
or .fail(), to handle its outcome.

3. If the application returns a result successfully from the source, then we have to let
the consumer application know about this outcome. In this case, we call the .re
solve() function with or without return parameter response.
a. Once the Deferred Object resolves the result with a success outcome and passes

any parameters to a handling function we can access these parameters (including
the response parameter) from the anonymous callback functions in .done()
or .then(). In our case, the response JSON object holds the return data, and
we should be able to access the key/value pairs within the callback function.

b. If the outcome results in a failure, we can also let the consumer application know
about it. It is good practice to pass descriptive messages to the consumer appli‐
cation about what went wrong while processing the request. In our case, we pass
an error code and a message to the consumer application to handle the result
accordingly.

c. if we receive a failure from our request, then the .fail() function is able to pass
us the parameters that are dispatched from .reject(). In our case, we can access
the error code and the message from our anonymous function in order to handle
this failure with a friendlier error message to the users in the UI.

Cache Manager for Handling Multiple Deferred Objects
We need to keep track of which Deferred Objects need to be executed for a given handle
key. Since the $.Deferred object allows multiple callbacks to be attached even after the
callbacks are fired, it is necessary that we cache the deferred handles for all async tasks.

When we invoke a Java method from JavaScript, we pass this cache handle key along
with the method ID and parameters so that Java resolves the content and calls back the
JavaScript function with that handle key to invalidate it from the cache. This solution
ensures that a task is only performed once for a given key. This mechanism is also very
useful for keeping tracking of Deferred Objects for given requests for debugging and
logging purposes.

90 | Chapter 5: Inter-workings of the JavaScript and Java Layers

Figure 5-5. Karura framework

Karura Framework
The Karura is a divine creature with human torso and birdlike head in Japanese Hindu-
Buddhist mythology.

— Wikipedia

As part of this book, we are also introducing Karura (shown in Figure 5-5), a lightweight
web application framework we have developed for building hybrid applications. Karura
features a custom message dispatcher module for routing methods from Java to Java‐
Script.

We do this by associating each JavaScript object with a callback handle implicitly. This
callback handle is automatically made available to the Java objects, and is then used for
routing the responses back to JavaScript.

For more details on this approach, you can look at karura.js for JavaScript and the
WebView Plug-in for Java dispatch framework respectively.

Karura is different from PhoneGap, Cordova, and other web application frameworks
in the sense that it leverages autogeneration to generate JavaScript for components that
have been exposed through the WebView. This allows developers to concentrate on
application logic without requiring them to write thousands of lines of JavaScript code
to access the native components.

Hence, the Karura framework has been named after this hybrid creature based on the
story in Japanese Hindu-Buddhist mythology. Karura framework is distributed under
GPL and Commercial Licenses.

Karura framework can be found at GitHub.

Cache Manager for Handling Multiple Deferred Objects | 91

http://goo.gl/FMpTe
http://goo.gl/nbdst
https://github.com/karuradev

Thread Safety
When accessing Java objects from the JavaScript layer, the methods may be accessed
from a private, background thread associated with the WebView that is different than
the main application/UI thread that the Java layer typically runs in.

This means that application developers need to be cautious of thread safety while ac‐
cessing the exposed Java functions and the object’s fields directly from those functions.

Our recommended approach for solving this problem would be to use the functions
exposed to the JavaScript layer to queue the requests using a handler associated with a
main thread. The handler can then dispatch these events on the main thread, thereby
taking care of any threading issues.

You can extend this concept further by queuing non-UI related events on the non-UI
loopers (and associated handlers). This will allow you to keep your UI thread lightweight
and responsive.

92 | Chapter 5: Inter-workings of the JavaScript and Java Layers

CHAPTER 6

HTML Architecture for Hybrid Applications

Your hybrid application is primarily an HTML5 web page built using mobile-optimized
JavaScript and CSS-styled to look and feel native. Like any application, hybrid applica‐
tions can be rather complex depending upon the user experience. For the sake of sim‐
plicity, let’s assume a simple app that contains a single WebView and a single entry point
web page—for example, index.html. An hybrid application will be visible to users like
any other application on the application launcher. Once users tap on the application
launch icon, the main activity will be created containing a WebView with no browser
chrome visible. Upon creation, the WebView will load your default entry point web page
to initiate the user experience. From that point on, the design of the web component is
completely your choice, however single page applications have recently emerged as a
de facto design strategy for these applications. Let’s look at this design pattern in slightly
more detail.

Architecture of a Web Application
A typical web application can architecturally be represented as shown in Figure 6-1.

93

Figure 6-1. Web Application Architecture

The architecture is self explanatory, however, we would like to reiterate a few salient
points:

• UI events generate DOM objects based on user interactions.
• The model abstracts network connectivity and storage making the controller and

views agnostic of the source and destination for data.
• The model is assumed to be the only component that stores anything about the

data.

Single Page Applications (SPA)
A single page application is a web application in which the entire user experience is
contained within a single web page. SPA architecture empowers mobile web applications
to become more uniform. These apps persistently run the same page with different views
or content, but without reloading or navigating away to another resource. This is
achieved by separating the data from the presentation layer and relies heavily on Java‐
Script.

SPA architecture uses the fragment identifier, which is introduced by a hashtag (#) in
the URL location, followed by an anchor identifier to point to an element in the HTML
document. For example, if your website URL looks like this http://oreilly.com/
index.html#article, The fragment article refers to an HTML element with an id="ar
ticle" attribute in the index.html document.

One caveat, though, is that this technique can break the browser’s page history naviga‐
tion so that it will not allow you to hit the Back/Forward buttons to navigate the re‐
sources. Using JavaScript, we could take advantage of this particular functionality to

94 | Chapter 6: HTML Architecture for Hybrid Applications

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

navigate our views within the same HTML document without changing the current
state of the document. There are many JavaScript libraries that rely on this simple tech‐
nique in order to build an MVC pattern for web applications. Particularly, using this
pattern may improve the user experience in the mobile web applications with limited
resources. We will be using Backbone.js to leverage SPA experiences in our sample
application.

Key Design Considerations for Single Page Applications
Here are some things to keep in mind when creating single-page applications:

• Modularize your code as much as possible.
• Try to make these modules independent of each other, if possible.
• Use the proper access paradigm for variable names. Make sure you do not expose

what is not required.
• Develop a mechanism wherein you can explicitly identify module dependencies

and hence load them at runtime.
• Additionally, it would be beneficial if non-UI modules can be run from the com‐

mand line. This will greatly facilitate unit testing.

The Libraries and Frameworks for Your Hybrid Apps
You can find many different JavaScript libraries tailored for mobile applications. It is
ultimately your choice to pick ones that are suitable for your needs. If you are using
open source software, ensure that the software license is aligned with your company’s
third-party software policies. We prefer the following libraries and frameworks for
flexibility and licensing.

Backbone.js for MVC Framework
Backbone.js helps us organize our code into manageable sections, namely models,
collections, and views. It is a lightweight library that provides structure to single-page
applications using a hashtag and exclamation mark (#!) together in the URL location
for its routing (HTML5 pushstate is also available). It uses JSON format for its models
and collections excessively without tying the data to the DOM. One of the most useful
features is that the models in collections can be bound to UI views (HTML) and auto‐
matically updated as data changes.

Backbone.js has become a very popular JavaScript framework for web and mobile
applications. You can download this library from the Backbone website.

Key Design Considerations for Single Page Applications | 95

http://goo.gl/Ez60R

Underscore.js for Utility Support
Underscore.js is a utility-belt library for JavaScript that provides support for the usual
functional suspects (each, map, reduce, filter…) without extending any core JavaScript
objects. Additionally Underscore.js has a powerful feature that can compile JavaScript
templates into functions that can be evaluated for rendering. While there are many
JavaScript templating engines available, we will use Underscore.js for our sample
project, because we will be using Backbone.js, which requires Underscore.js as its
only hard requirement anyway. The Underscore.js library also offers 80-odd handy
functions that enhance Backbone.js.

You can download this library and access documentation from Underscore website.

iScroll.js for scrolling
iScroll.js is a must-have library that enables scrolling the view using JavaScript. This
library was developed to accommodate the limitations of the mobile WebKit, which
does not provide a native and cross-device way to scroll content inside a fixed width/
height element.

You can obtain the iScroll library from the iScroll 4 website. You may also follow the
iScroll 5 beta group at the iScroll 5 group website. To use iScroll.js, list items need
to be appended to an iScroll container element.

<div id="wrapper">
 <div id="scroller">
 <ul id="thelist">
 row 1
 row 2
 row 3
 row 4

 </div>
</div>

var myScroll = new iScroll('wrapper');

iScroll Caveats
Since a list needs to be prepopulated, you may experience performance issues when you
render a large amount of list items, such as 1,000 rows in a roster. Of course, you can
use pagination to break down the content into multiple views, however, there are cases
where you want to list all of your content within the same view.

Ideally, iScroll should allow us to append items to the DOM progressively as you scroll,
which is currently not supported. One approach to overcome this limitation would be

96 | Chapter 6: HTML Architecture for Hybrid Applications

http://goo.gl/5YsWY
http://goo.gl/fsLGK
http://goo.gl/jddTY

to progressively load the content into scrolling area using setTimeout(func, delay).
This way we can load an initial set of items into the view to give the illusion that the
content is loaded fast enough to view, thereafter, we can append the rest of the elements
to the scrolling container as the user starts scrolling.

This method works fine for a relatively small list of items in the list view. The ideal
solution would be appending the list items to the scrolling view one by one dynamically
as you scroll. This optimization technique would offer a better user experience than the
previous one we mentioned here.

jQuery.js for JavaScript application
jQuery.js has become the industry standard JavaScript library for building interactive
client-side applications. It provides many APIs that can handle the quirks between dif‐
ferent browsers implementations of the core JavaScript functions. It also features a fast
chainable API framework. One can argue that writing native functions can run faster
than jQuery, which encapsulates them, and while this can be true, writing maintainable
code and overcoming the cross-browser issues is primarily our focus. We also find
jQuery fast enough that it does not pose a problem with mobile performance, especially
considering it is loaded directly from the device.

Preload Images Within the CSS Files
For our sample application, we will be using a jQuery plug-in to preload the images in
our CSS documents. The preloadCssImages.jQuery_v5.js plug-in offers an unob‐
trusive way to preload all your images from different directories, which are defined in
your CSS files.

You can download this library from the jQuery-Preload-CSS-Images plug-in website.

$(document).ready(function(){
 $.preloadCssImages();
});

At the time of this writing, we have observed that the images that are
defined in the CSS documents are not loaded properly in the Web‐
View UI by Android. This could happen for several reasons. Using
preloadCssImages.jQuery_v5.js, you can work around these issues
by downloading images explicitly.

jQuery.js for JavaScript application | 97

http://goo.gl/Gj6Eh

CSS Reset Avoids Browser Inconsistencies
Not all browsers are created equal, the same goes for mobile browsers. CSS Reset is a
way to keep the rendering results as universal as possible by resetting the built-in default
style values to a baseline value before your custom CSS is applied.

HTML5 Boilerplate provides two CSS files (main.css and normalize.css), which offers a
nice way of resetting your browser’s default style settings. You can download these files
from the Html5boilerplate website.

/*
Sample CSS Reset
*/
html, body, div, form, fieldset, legend, label {
 margin: 0;
 padding: 0;
 border: 0px;
 outline: 0px;
 font-size: 100%;
}

Your Home index.html
The index.html web page will be launched by the WebView when an activity starts. This
web page is normally placed in the assets directory. We defined the viewport meta tag,
which controls the initial appearance when the web page loads. The CSS link tag was
intentionally left blank because we like to load our CSS files using JavaScript by re‐
specting the window.devicePixelRatio window property.

We discovered that in some older versions of the Android API, our
sample app was crashing when processing the 0.75 Device Pixel Ra‐
tio (DPR) while loading the CSS using the link tag. We were able to
re-produce this abnormal crash with a few more same-generation
phones as well. However, the usage that follows is more responsive
than loading these CSS files in JavaScript; you may see a nonstyled view
first for a split second, then a styled version will be shown due to the
onDomReady() delay in JavaScript.

The following way of loading your CSS into the DOM is the ideal way:

<link rel="stylesheet"
 media="screen and (-webkit-min-device-pixel-ratio: 0.75)"
 href="ldpi.css" />
<link rel="stylesheet"
 media="screen and (-webkit-min-device-pixel-ratio: 1.0)"
 href="mdpi.css" />
<link rel="stylesheet"

98 | Chapter 6: HTML Architecture for Hybrid Applications

http://goo.gl/3JUxZ

 media="screen and (-webkit-min-device-pixel-ratio: 1.5)"
 href="hdpi.css" />
<link rel="stylesheet"
 media="screen and (-webkit-min-device-pixel-ratio: 2.0)"
 href="xhdpi.css" />

Other possible solutions follow, but are not recommended unless it is necessary to load
your CSS this way.

Loading CSS using a JavaScript function for different DPIs:

function loadCSS() {
 switch(window.devicePixelRatio) {
 case 2.0:
 $('#dpr-css').attr('href', 'css/xhdpi.css');
 break;
 case 1.5:
 $('#dpr-css').attr('href', 'css/hdpi.css');
 break;
 case 0.75:
 $('#dpr-css').attr('href', 'css/ldpi.css');
 break;
 default: // 1
 $('#dpr-css').attr('href', 'css/mdpi.css');
 }
}

#dpr-css is the ID of your stylesheet <link> tag in the HTML.

<link id="dpr-css" rel="stylesheet"
 href="css/default.css"
 type="text/css"
 media="screen" />

Alternatively, you can append your stylesheets to the DOM for different densities using
the following code. However, we do not recommend this technique.

$('HEAD').append($('<link rel="stylesheet" href="xhdpi.css" type="text/css"
 media="screen and (-webkit-min-device-pixel-ratio: 2.0)" />'));

Here’s a sample source of a template file for a hybrid Android application:

<script type="text/x-tmpl" id="tmpl_contacts_item">
<div class="contact item" data-id="<%= id %>">
 <div class="edit">Edit</div>
 <div class="profile">
 <img data-id="<%= id %>" class="avatar" src="<%= avatar %>" />
 <div class="full_name"><%= name.givenName %> <%= name.familyName %></
div>
 </div>
 <% if (emails.length > 0) { %>
 <div class="details">
 <div class="caption emails">Emails</div>
 <% _.each(emails, function(email) { %>

Your Home index.html | 99

 <div class="comm"><%= email.type %> :
 <a href="mailto:<%= email.value %>"><%= email.value %></div>
 <% }); %>
 </div>
 <% } %>
 <% if (phoneNumbers.length > 0) { %>
 <div class="details">
 <div class="caption phones">Phones</div>
 <% _.each(phoneNumbers, function(phone) { %>
 <div class="comm"><%= phone.type %> :
 <a href="tel:<%= phone.value %>"><%= phone.value %></div>
 <% }); %>
 </div>
 <% } %>
 <% if (note != '') { %>
 <div class="details">
 <div class="caption notes">Notes</div>
 <div class="note"><%= note %></div>
 </div>
 <% } %>
</div>
</script>

Viewport Meta Tag
The viewport meta tag defines a set of properties that describes the behavior and initial
appearance of the web page when it is rendered for the first time based on the device
screen size. The viewport is the section of the web page that is shown in the view. This
viewport meta tag is supported by many mobile browsers.

Viewport Width
The width of the viewport in pixels tells the browser how best to render the web page
width-wise. In this example, we are targeting 320 px wide screens to display our content.

<meta name="viewport" content="width=320">

This does not scale the view for different screen sizes. In particular, Android device
fragmentation makes this more of a concern than on other platforms. So using the
device-width value for the width property in the viewport tag would allow the content
to be scaled to the available width on the screen.

<meta name="viewport" content="width=device-width">

In this case, whether your screen width is 480 px in portrait mode or 800 px in landscape
mode, the device-width value makes the available width independent of how wide
your screen is.

100 | Chapter 6: HTML Architecture for Hybrid Applications

Viewport Scaling with the Content Attribute
Here are a few of the available options for the content attribute:
initial-scale

The initial zoom of a web page. Its scale is a multiplier from 0 to 10.0 that sets the
scale of a web page after its first display. The larger value zooms in, but 1.0 means
no zoom.

minimum-scale

The minimum multiplier the user is able to zoom out of a web page. 1.0 does not
allow any zooms. Its scale is from 0 to 10.0.

maximum-scale

The maximum multiplier the user is able to zoom in to a web page. 1.0 does not
allow any zooms. Its scale is from 0 to 10.0.

user-scalable

The permission (yes/no) as to whether the user is able to control the scale (zoom
in/out) of the web page or not. The default value is yes.

Support for the target-densitydpi=device-dpi property has been dropped from
WebKit in favor of responsive images and CSS device units. This property was not
supported by iOS anyway. The issue can be followed at the WebKit bug website.

<meta name="viewport" content="width=device-width,
 minimum-scale=1,
 initial-scale=1,
 maximum-scale=1,
 user-scalable=no" />

This meta tag has an important role when optimizing the web page for mobile devices.
It basically prevents the mobile browsers from altering the zoom level of that web page
unilaterally.

Responsive Design and Media Queries
In the mobile app paradigm, responsive design should be carefully considered when it
comes to content adaptation and presentation because the available screen area is
limited.

Media queries in CSS3 help the application adapt to different sets of properties and rules
for your CSS styling. Media queries allow us to target not only certain generations of
devices but also to scrutinize some of the characteristics of a device to target certain
styling attributes such as orientation, device-aspect-ratio, color, or resolution.

Responsive design is fulfilled by using the media queries in the CSS files to improve the
device-specific response while the media attribute controls which styles to apply.

Viewport Scaling with the Content Attribute | 101

http://goo.gl/URmQd

There are three ways to define CSS media queries in your HTML documents. We will
be using the first technique in our sample application.

In the <style> element as media rules:

<style type="text/css">
 @media only screen and (-webkit-min-device-pixel-ratio: 1.0) {
 /* some CSS definitions here */
 }
 @media only screen and (orientation: portrait){
 /* some CSS definitions here */
 }
 @media only screen and (orientation: landscape){
 /* some CSS definitions here */
 }
</style>

As an external include:

<link rel="stylesheet"
 type="text/css" href="small_screen.css"
 media="only screen and (max-width: 320px)" />

by importing the stylesheet:

@import "small_screen.css" only screen and (max-width: 320px);

Android provides WebKit as a rendering engine, which supports a proprietary property
called -webkit-min-device-pixel-ratio that returns the pixel density of that device.
There are currently at least four possible values for the Device Pixel Ratio (DPR): 0.75,
1.0, 1.5, and 2.0. These values can accessed from JavaScript using the window.device
PixelRatio window property.

• If the DPR is 0.75, the device is considered low density and the web page is scaled
down by default.

• If the DPR is 1, the device is considered medium density and the web page is not
scaled at all.

• If the DPR is 1.5, the device is considered high density and the web page is scaled up
by this ratio.

• If the DPR is 2, the device is considered extra high density and the web page is scaled
up by this ratio.

To understand a little bit more about pixel density, see this in-depth article by Peter-
Paul Koch, visit the Quirksmode website for pixel density.

102 | Chapter 6: HTML Architecture for Hybrid Applications

http://goo.gl/hKYlS

EM or Percent (%) unit for scalable interface
There are several kinds of units available for scaling an HTML element in the browser:
EMs (em), Root Ems (rem), Pixels (px), Picas (pc), Exes (ex), Percents (%), and Points
(pt). However, some of them are not largely supported for the font-size property to
scale the text size in the CSS document.

We focus on two of these for mobile applications: em and %. If you would like to display
the correct size of text in all screen resolutions, em or % is the ideal solution because they
are the most commonly used ones for the font sizes on the Web, but which one is more
preferable and why? Designers and developers are often confused with which to choose
for font size in the CSS properties.

Normally, the WebKit renders the font sizes as 16 px (16 sp in Android) unless you
change the default font size in the WebKit settings explicitly using the setDefaultFont
Size() method. In other words, most web browser render the font sizes as the 16px,
which is equal to 1em or 100%. However, we do not recommend you use the px unit for
the font sizes in your CSS documents.

The W3C also recommends using em or % for the font sizes for more scalable and robust
stylesheets. We actually found out that using percent (%) for the font size allows designers
to preserve readability for maximum consistency and accessibility in visual designs.

Sometimes setting a font-size value to an inner HTML tag may not
give you the result that you expect. This is because the inner element
inherits the font-size from its parent and applies its own font-
size relative to its parent’s font-size. As a result, you may end up
seeing a smaller font.

Font size inheritance in nested HTML tags looks like the following:

header {
 font-size: 2em;
 /*font-size: 200%;*/
}
span {
 font-size: 0.5em;
 /*font-size: 50%;*/
}

<header>This is a large header without any nested tag</header>
<header>This is a large header with a span tag</header>
This is a span tag

Therefore, the first <header> tag has a font size as 2em, which is twice the base font size,
then the inner tag in the second <header> tag will inherit its parent tag as 2em,
then it will multiple with 0.5. It will result in 1em, but if you look at the second

EM or Percent (%) unit for scalable interface | 103

tag, its font size is actually the correct 0.5em. Both em and % units get bigger as the base
font size increases. The font experiment can be seen at the Jsfiddle website.

It is also possible that you may need to convert px to em or vice versa. You may pro‐
grammatically do the conversions using this handy jQuery plug-in in your application.
Visit the jQuery-Pixel-Em-Converter plug-in website or use the tool at the Pxtoem
website.

CSS3 Introduces rem Unit
The rem unit is relative to the root (<html>) element. You can define a root font size,
and then you can use that font size as a baseline within your CSS document. As we
mentioned earlier, em causes a compounding issue for nested elements, which inherit
the font-size from their parents, whereas the rem unit prevents this undesired behavior
and gives designers and developers control of the font size by taking the percentage of
the root (<html>) element’s font size for each element independently, even if they are
nested.

Opacity or RGBA: What Is the Difference?
The opacity property in CSS specifies the amount of transparency for an element. Its
value can be anywhere from 0.0 to 1. A lower opacity value means the element can be
more transparent. A higher value means the element is fully opaque. The main differ‐
ence between opacity and RGBA is that opacity affects an element’s children with the
same opacity level while RGBA has an effect on the transparency of a single element only
for independent opacity.

-webkit-opacity: 0.5;

RGBA stands for Red, Green, Blue, and Alpha. CSS3 introduced the RGBA support to
set the alpha transparency, which sets the opacity via the alpha channel and controls
how much of what is behind the color shows through.

background: rgba(255, 0, 0, 0.5);

WebKit supports RGBA in CSS properties; however, there is a performance issue with
RGBA in scrolling views. We will talk about these performance tips and tricks in later
chapters.

We will use the RGBA conversion tool at Devoth’s HEX 2 RGBA Color Calculator web‐
site to convert HEX colors to RGBA format for our example application.

104 | Chapter 6: HTML Architecture for Hybrid Applications

http://goo.gl/AVRxh
http://goo.gl/BwjJZ
http://goo.gl/iTYJE
http://goo.gl/iTYJE
http://goo.gl/R7X82
http://goo.gl/R7X82

Event Pooling
As your application gets complex, managing events can be burdensome. Organizing the
events into an event pooling mechanism, which is a variation of observer pattern,
mechanism might be one alternative solution to manage dependencies. jQuery offers
the bind and the trigger APIs to handle event pooling in a easy way. Event pooling can
be really useful when the events are dispatched from the Java layer using Android Web‐
View.

Here is an example of event pooling using jQuery’s bind and the trigger APIs.

function updateContact(e, data) {
 switch(e.type) {
 case 'NAME_UPDATE':
 // update the name
 // data.name
 break;
 case 'PHONE_UPDATE':
 // update the phone number
 // data.phone_number
 break;
 default:
 // default action
 }
}

The following code allows us to bind an event to the document, which can be then called
from various sources, such as HTML, a URL location, or JavaScript code itself using the
trigger API in jQuery. You may notice that multiple event names can be registered
using the bind API.

function subscribeEvents(eventName, callback) {
 $(document).bind(eventName, callback);
}

subscribeEvents('NAME_UPDATE PHONE_UPDATE', function(e, data) {
 updateContact.apply(null, [e, data]);
});

Using the following code, we can easily encapsulate a common functionality into the
triggerEvent() method in which triggering an event would be very easy using the
eventName, args, and delay parameters.

function triggerEvent(eventName, args, delay) {
 setTimeout(function() {
 $(document).trigger(eventName, args);
 }, delay || 0);
}

Event Pooling | 105

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Once you subscribe to your events using subscribeEvents() function, you can trigger
these events from HTML, using the URL location from the Android WebView or you
call them from the JavaScript code itself.

// from HTML
<input type="text" name="full_name"
 onKeyUp="triggerEvent('NAME_UPDATE', { name : $(this).val().trim() },
100);" />

// from URL location (Android WebView can trigger this)
JavaScript: triggerEvent('NAME_UPDATE', { name : 'Karura' }, 100)

// or from JavaScript code
triggerEvent('NAME_UPDATE', { name : 'Karura' }, 100);

For some reason, when Android WebView executes the JavaScript:
func(); code in the URL location, the WebView gains the focus and
dismisses the soft keyboard while typing in a form field. This behavior
can cause very unpleasant experiences for users if they are chatting in
your app. One ideal solution could be that when a user focuses into a
form field, you either detect the focus in the Java layer or notify the
Java layer from JavaScript, then pull the content and events using Java‐
Script from the Java layer. By doing so, you can prevent the Android
WebView from gaining focus while dispatching the events to the UI
layer.

106 | Chapter 6: HTML Architecture for Hybrid Applications

CHAPTER 7

CSS, DOM, and JavaScript: Optimization
Tips and Useful Snippets

In this chapter, we will explore how to build snappy mobile applications by taking ad‐
vantage of high-performance optimization techniques while avoiding memory leaks.
Performance is a big focus for mobile applications, as smartphones have limited re‐
sources.
Image garbage collection

The images in the view may not be immediately garbage collected when you remove
the DOM container element. In order to release the previous image reference, you
can assign a 1x1 pixel transparent data image src attribute before safely removing
the image object. You can encode this image as base64 to avoid a network request.

function removeImage(image) {
 image.src = '
CADs=';
 setTimeout(function () {
 delete image.src;
 image = null;
 }, 0);
}

Data URI images
Use of base64 encoded data images is very popular in mobile apps. It involves
inlining your image data straight into the HTML or CSS page. It allows images to
load instantly with your web app’s HTML page—something very important if you
want your app to function like a native app. An additional benefit is that you can
easily retrieve relatively small images like the avatars within the JSON strings from
the Java layer. If you want to create data URI images manually, you can use the
following command in your terminal window:

openssl base64 -in image.png

107

Preloading images
Perhaps some of your web data needs to come from a dynamic remote resource or
is too large to use base64. You can also preload images to cache in your app browser’s
memory. This solution is perfect for login pages or other “doorways” where you
have the opportunity to load data in the background.

function loadImage(src) {
 var image = new Image();
 image.src = src;
 image.onerror = function() {
 debug.error('Missing image source: ' + this.src);
 };
 return image;
}

var image = loadImage('path/to/image');
image.onload = function() {
 // do something
};

Avoid using text-shadow, box-shadow, border-radius, gradient, opacity, CSS
RGBA, and image transparency

These styling effects can slow down the scrolling in the WebKit. The issues with
text-shadow and box-shadow are already resolved in the current WebKit, but the
Android version of WebKit hasn’t been fixed yet. So, use them on scrolling areas
sparingly; visit the WebKit bug website for additional information. Also, using the
opacity and CSS RGBA properties in CSS may interfere with hardware accelerated
rendering in the scroll view. If these effects are needed, use lightweight .png graphics
that combine many of these effects into one static image or experiment with how
much you can do in CSS3 and how much you will need to statically create. This is
especially required for scrolling or animating areas of your application.

Use CSS3 Transitions instead of JavaScript animations
CSS3 Transitions are hardware accelerated, harnessing not just the CPU but the
GPU of the video card. They offer much smoother user experiences than their
counterpart.

-webkit-transition: width 1s;

Image sprites
An image sprite is a collection of images placed into a single image while assigning
a unique position for each one. Using image sprites will reduce the number of HTTP
requests to the web server and save bandwidth. It is also an ideal technique for game
applications in order to load images faster. For example, you could put all the world
countries’ flags in a single CSS sprite. This concept can be easily used in the Android
Java layer as well. You can find more about this example at the Flag-sprites website.

108 | Chapter 7: CSS, DOM, and JavaScript: Optimization Tips and Useful Snippets

http://goo.gl/SJf87
http://goo.gl/NWStf

Object caching
Caching the JavaScript and DOM variables allows you to access them faster in the
iterations or later in the code.

var $box = $('#box'), len = $box.length;
for(var i=0; i < len; i++) {
 $box[i].show();
}

Use more specific DOM selectors
Using more specific DOM selectors can speed up your application, as there are
fewer elements that JavaScript needs to iterate through.

$('input.username') selector is faster than $('.username')
input[type="..."] selector is faster than [type="..."]

Avoid multiple reflows using DocumentFragment
The DocumentFragment object allows us to reduce DOM manipulations while we
can insert multiple HTML elements outside of the DOM without reflowing. Once
you move these elements from a temporary location to the DOM in a single oper‐
ation, the DocumentFragment triggers a single reflow, which is a real booster.

var fragment = document.createDocumentFragment();

Use Web Workers to compute heavy processing
Web Workers can improve your application responsiveness and performance while
doing CPU intensive tasks in background threads. Be aware that Web Workers
cannot access the DOM layer.

// non-ui.js
self.onmessage = function(event) {
 self.postMessage(event.data);
}

var worker = new Worker('non-ui.js');
worker.onmessage = function(event){
 console.log('result: ' + event.data);
}
worker.postMessage("O'Reilly books");

translate3d(0, 0, 0) is hardware accelerated
Using translate3d on elements can activate the GPU for compositing and opti‐
mizing the performance for animations. It can make a complex animation that is a
little jerky silky smooth. Be careful, however, as overusing this trick can lead to poor
battery performance.

-webkit-transform: translate3d(0, 0, 0);

CSS, DOM, and JavaScript: Optimization Tips and Useful Snippets | 109

Use event delegation
Having a lot of event listeners in your code can reduce the performance and its
responsiveness. When you can attach an event listener to the parent element, event
delegation can handle all the events for its children in the event bubbling phase.

Caching the style object
Caching the style object into a variable improves the performance of UI repaint
or redraw.

// 1
var element = document.getElementById('id');
element.style.backgroundColor = 'red';

// 2 - this is faster
var style = document.getElementById('id').style;
style.backgroundColor = 'red';

setTimeout(fn, 0) is helpful
The JavaScript runs on a single thread, which is called the UI thread in a single
window context. When using the setTimeout() with 0 delay, it allows the JavaScript
interpreter to finish the current call stack, and creates a new call stack to be added
to the event queue on the nearest timer tick. It also eludes seeing the “Script is
running too long” warning message. This is helpful in many situations, for example,
if you need to manipulate a DOM element and then right after access it. Adding
the setTimeout() optimization guarantees the DOM modification is done before
the element is ready to be accessed.

requestAnimationFrame() is for animations
Avoid using times or intervals for your animation in JavaScript. The requestAni
mationFrame() or rAF allows the browser to run smoother animations with higher
frames per second and higher timer precision in an efficient way.

Detecting devices
When it comes to content adaptation and ironing out platform differences, detect‐
ing the device platform would be handy. Use the following code snippets to identify
the current device:

var devices = {
 isMobile : (navigator.userAgent.indexOf('Mobile') > -1),
 isAndroid : (/android/gi).test(navigator.appVersion),
 isIDevice : (/iPhone|iPad//iPod/gi).test(navigator.appVersion)
}

Detecting touch events
This simple touch event detection snippet can identify whether the device supports
touch events or not, and it falls back to desktop click events if not supported.

var isTouch = !!('ontouchstart' in window);
var touchEvents = {

110 | Chapter 7: CSS, DOM, and JavaScript: Optimization Tips and Useful Snippets

 CANCEL : (window.ontouchcancel !== undefined ?
 'touchcancel' : 'mouseup'),
 START : (window.ontouchstart !== undefined ?
 'touchstart' : 'mousedown'),
 MOVE : (window.ontouchmove !== undefined ?
 'touchmove' : 'mousemove'),
 END : (window.ontouchend !== undefined ?
 'touchend' : 'mouseup')

// usage 1
$('BODY').bind(touchEvents.START, function() {
 // do something
});

// usage 2
$(document).on(touchEvents.START + ' ' + touchEvents.END,
 '.inactive',
 function() {
 $(this).toggleClass('active');
 });

Removing the address bar
If you are building a hybrid app using Android WebView, no need to worry about
this, however, if you are building a mobile web app, then you may consider the
following code to remove the address bar from the browser:

$(window).bind('load', function() {
 setTimeout(function() {
 window.scrollTo(0, 1);
 }, 0);
});

Preventing page bouncing
When you drag the top of the page down, it will partially scroll vertically. When
you release your finger it will bounce back to its original position. This behavior is
often undesired; you can disable it using this snippet:

$(document).bind(touchEvents.MOVE, function(e) {
 e.preventDefault();
});

Detecting orientation change
This code registers the orientationchange event to the window object and allows
you to access the four different orientation states:

$(window).bind('orientationchange', function() {
 switch (window.orientation) {
 case 0:
 // portrait (normal)
 break;
 case 180:
 // portrait (upside-down)

CSS, DOM, and JavaScript: Optimization Tips and Useful Snippets | 111

 break;
 case -90:
 // landscape (clockwise)
 break;
 case 90:
 // landscape (counter-clockwise)
 break;
 default:
 //
 }
});

Detecting resize change
This code registers the resize event to the window object and allows you to access
the resize event. One caveat is that when orientation occurs, both orientation and
resize events are fired.

var heightBefore = $('body').css('height');
$(window).bind('resize', function() {
 var heightAfter = $('body').css('height');
 console.info('onResize: ' + heightBefore + '-' + heightAfter);
});

112 | Chapter 7: CSS, DOM, and JavaScript: Optimization Tips and Useful Snippets

CHAPTER 8

Publishing Apps for Android

The application development lifecycle can be thought of as an iterative process involving
design, development, distribution, monitoring of user response, bug fixes, and en‐
hancements. This chapter aims at describing the process involved for making your ap‐
plication available for users to download and install on their devices. An optimum
distribution and discovery infrastructure plays a key role in making sure your applica‐
tion will be found among millions of other apps and will be employed by users on an
ongoing basis.

Applications are distributed through well known discovery and distribution channels,
often known as market places. There are a number of distribution channels available to
Android applications developers including ones from Google Play, Amazon, and Get‐
Jar. These marketplaces allow users to discover, download, and pay for applications.

The process of distributing your applications across various market places is quite sim‐
ilar in principle, however, the modalities may differ. From 30,000 feet, the publication
workflow can be summarized as a sequence of the following steps:

1. Register a publisher/developer account.
2. Set up the merchant account for payments.
3. Upload the marketing material for your application.
4. Determine whether you would like to run alpha and beta programs for your

application.
5. Decide the price for your application, if you wish to charge for it.
6. Digitally sign your application.
7. Upload the application.
8. Wait for approval, if any. If your application is rejected during this phase, incorpo‐

rate comments and resubmit the application.

113

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://goo.gl/BdmoS
http://goo.gl/RtT2x
http://goo.gl/ro02u
http://goo.gl/ro02u

9. Wait for your application to go live.

Some of these steps might be optional or may need to be performed
only once per developer.

Even though most of the marketplaces are for discovery and distribution of content
including Android applications, almost all of them also offer tools and services to de‐
velopers to track the performance of their application through usage analytics and de‐
tailed crash logs. We will also look at some of these features as we sail along in this
chapter.

From the end consumer perspective, these marketplaces can be accessed from both the
device or the desktop. Hence, you must prepare and upload marketing material that
suits multiple form factors.

In this chapter, we will look at the application publication process for
Google Play and Amazon App Store in detail, however, process for
Samsung, GetJar, and SlideMe are quite similar.

The application publication process should not be undermined in any way. This process
should typically start around the same time as the application features and business
model definition phase. This is important because some of the publication-related de‐
cisions will affect the design of your application as well. Things you may want to consider
for publication include:

1. The marketplaces in which you wish to make your application available. This is
because different app stores might have different in-app purchase or license veri‐
fication libraries, which you may have to incorporate in your applications based on
your choice of these marketplaces.

2. Whether you would like to charge for your application.
3. If you would like to have a beta program for your application.
4. If you would like to have different free and paid versions of the app.
5. Features in free and paid versions of the application.
6. If you would like to offer your application using a subscription model.
7. Are their any specific devices that need to be targeted for your applications. This

may seem to be unnecessarily short-sighted at first because obviously you would
want your application to be available on as many devices as possible. However,

114 | Chapter 8: Publishing Apps for Android

http://goo.gl/BdmoS
http://goo.gl/RtT2x

please bear in mind that some app stores like Amazon, Samsung, and BlackBerry
are device specific and if you are targeting these app stores, then you may have to
cater to certain device profiles or ensure that certain marketplace requirements are
adhered to by the applications.

As part of the application release (publication) process, you may additionally want to:

1. Test your application across multiple devices, screen form factors, and orientations.
2. Verify that your application meets the guidelines put forth by the respective app

store content guidelines.
3. Turn off all debugging diagnostics for release, including any extraneous logging

that could affect application performance.
4. Verify that the debuggable option is off.
5. Run stability testing on your application using tools like monkeyrunner and monkey.
6. Replace all debug API keys with the release versions (you can also achieve this by

either using a factory pattern driven off the BuildConfig class or using a dedicated
configuration for release).

7. Take your application through PEN(etration) testing if you provide access to critical
information through your app.

8. Prepare your AndroidManifest.xml file by:
a. Minimizing the permissions set by removing unused permissions.
b. Verify that the application icon (various sizes of PNG) is set appropriately.
c. Verify that the application label is set appropriately.
d. Verify that the application version name is set appropriately.
e. Verify that the application version code is set appropriately. The version code is

a number that the Android platform uses to manage application upgrades.
f. Make sure you have the appropriate uses-feature tag in the file to allow Google

Play to filter your application for the right set of devices.
g. Make sure only valid sets of activities are exported by the application.
h. Internationalize your app, based on the markets you wish to release the appli‐

cation on. This can include the following:
i. Text Strings

ii. Icons and images
iii. Colors
iv. Some layouts (if needed)
v. Marketing material and screenshots

Publishing Apps for Android | 115

9. Obfuscate and optimize code.

If your application requires certain capabilities from the device, you can use the uses-
feature tag in AndroidManifest.xml. This information is used by the Android platform
as a hint to determine the compatibility of the device with your app. However, it is always
a good practice to have a fallback behavior in your application if a particular capability
is not present.

This can be achieve by the setting the required param in the tag to false, for example:

<uses-feature android:name="android.hardware.bluetooth"
 android:required="false" />

This will allow the Google Play to show that Bluetooth is required for the application
to run but is not mandatory. You can then adapt the user experience by checking the
availability of Bluetooth on the device at runtime by querying the PackageManager
service as follows:

boolean hasBluetooth =
 getPackageManager().hasSystemFeature(PackageManager.FEATURE_BLUETOOTH);

Depending upon the value of hasBluetooth, you can adapt the user experience of the
application in accordance with device capability. One example would be to not show a
Bluetooth headset option in VoIP clients on devices that do not have a Bluetooth radio
available.

Digitally Signing Applications
Android application packages must be digitally signed for the Android package manager
to install them. To do this, you must generate a private key. A private key identifies the
developer and is critical to building trust relationships. It is very important to secure
the private key information.

The private key can be used to digitally sign the release package files of your Android
application, as well as any upgrades. Application updates must be signed with the same
private key. For security reasons, the Android package manager does not install the
update over the existing application if the key is different. This means you need to keep
the key corresponding with the application in a secure, easy-to-find location for future
use.

Android, like other Java platforms, follows the self-sign model for applications. This
means there is no certification authority to validate your authority, but the Android
package manager can ensure that subsequent updates for the app are from the same
developer. Also, as your application becomes bigger and more successful, it will end up
establishing a sort of identity for you as a developer users can trust. Details on digitally
signing your applications can be found at the Signing Your Applications website.

116 | Chapter 8: Publishing Apps for Android

http://goo.gl/eccZB

Protecting Your Application with ProGuard
The Android toolchain includes built-in support for the ProGuard tool to help you
secure your application.

Some ProGuard benefits include:

• Shrinking code
• Optimizing
• Remove dead code
• Obfuscating the source code

Enabling ProGuard is simple; there is a proguard-project.txt configuration file associated
with your application project. You can add, delete, and customize proguard rules in this
file. Once proguard rules have been specified, you can then update the proguard.con
fig setting within the application’s project.properties configuration file to point at the
ProGuard configuration file, like this:

proguard.config=proguard-project.txt

For more information on using ProGuard, see its documentation at the Android de‐
veloper ProGuard website.

Google Play
Play is a digital distribution platform from Google, where you can buy Android appli‐
cations among other media (for example, books, video, and audio). The Play store is the
default application marketplace installed on a Google Certified Android device, al‐
though you may use additional stores as well, depending upon the service provider and
the device manufacturer.

Registering as a Publisher
Before you can publish apps on Google Play, you need to register a developer account.
Registering the developer account is simple process and can be initiated at the Google
Play website. To publish applications on Google Play you will need a Google account.
Follow the URL and sign in with your Google account, as shown in Figure 8-1.

Protecting Your Application with ProGuard | 117

http://goo.gl/w66Ku
http://goo.gl/YjCzV
http://goo.gl/YjCzV

Figure 8-1. Sign into Google Play

If you do not have an account, then you can create one by clicking on the Sign Up button,
shown in Figure 8-2.

As part of the sign up process, you will be asked to provide your contact details and an
email address along with some personal information. The personal information, such
as phone number and date of birth, are used to allow you to unlock your account in the
future in case you forget your sign in information.

118 | Chapter 8: Publishing Apps for Android

Figure 8-2. Sign up for Google Play

Registering as a Publisher | 119

Once you have signed in or signed up for a Google account, you will be asked to accept
the Google Play Developer distribution agreement, as shown in Figure 8-3.

Figure 8-3. Accept the Google Play Developer distribution agreement

Here’s a summary of terms of agreement:

• You are a developer in good standing and you will follow the process as described
in the agreement for publishing applications on Google Play.

• For paid applications, the payments will be processed using a valid payment pro‐
cessor like Google Checkout.

• For paid applications, a transaction fees of 30% (at the moment) is applied on each
application, subscription, or in-app purchase.

• You are responsible for remitting the appropriate taxes to tax authorities.

120 | Chapter 8: Publishing Apps for Android

• You cannot redirect the application to a server that charges fees for the application
without using a Google approved payment processor. You can do so if your appli‐
cation does not direct users to the website.

• Refunds for applications are allowed within 15 minutes of application purchase.
Refunds are not available to users who have previewed the product before purchase.

• As an application developer, you are expected to provide appropriate post-purchase
support to users, if such support is not provided, then the Google can refund the
amount that was charged for the application.

• As a developer, you are expected to protect the privacy and legal rights of the user.
• Google will continue to maintain the rating of your application using past historical

data and user feedback for your application, which can be displayed to users without
prior permission.

• You are also providing a “non-exclusive, worldwide, perpetual license to perform,
display and use the product on any device.”

Google charges a nominal fees as part of setting up the developer account. Among other
things, this is used to establish a valid payer identity. Currently, Google charges a one
time $25 fee for this purpose. Upon acceptance of the Google Play Developer Distri‐
bution Agreement (GPDDA), you will be redirected to the Google Wallet setup page
where you can provide payment details for the developer account fees. As you complete
the payment process, you will be redirected to the Developer Console.

Developer Console
Developer Console is the developer’s landing page for distributing apps on Google Play.
From the Developer Console, you can set up a merchant account in Google Checkout
(so you can charge for your applications), upload applications, and get information
about your uploaded applications, among other things. You will be redirected to the
Developer Console once you have successfully signed up for a developer account.

A merchant account is required if you plan to charge users for your apps. You can set
up a merchant account easily by clicking on the Google Merchant Account link, and
then filling out a merchant account setup form. Setting up a merchant account is an
optional task, but if you do not set one up, you will not be able to charge users for apps,
subscriptions, and in-app purchases.

The Developer Console will also allow you to:

• Review and download application analytics for distribution across various android
versions, languages, and devices including user churn

• Upload, update, and republish applications

Developer Console | 121

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

• Access application crash logs and application freezes (including full-stack trace for
the thread that crashed)

• View and respond to user comments
• View application ratings
• Manage editorial and marketing material for your apps, to be displayed on poten‐

tially multimodal store fronts as in marketing material for web- and device-based
Google Play applications.

You will need to provide a US Federal Tax ID (EIN), a credit card
number, and a US Social Security Number (SSN) to set up a mer‐
chant account. This information is used to validate your financial in‐
formation.

Uploading an Application
Once you have created your developer account, you can upload your application on
Google Play. The following section will guide you through the necessary steps.

1. On the Developer Console, click on the Add New Application button, shown in
Figure 8-4.

Figure 8-4. Add New Application button

2. This will launch a pop-up window where you can specify the title of your application
and begin the application upload process, as shown in Figure 8-5.

122 | Chapter 8: Publishing Apps for Android

Figure 8-5. Specify the application title

3. Once you have specified the application title, you can either upload the APK for
the application or if the APK is not available, you can start working on the store
listing. You can do either one in any order, and do not worry, this pop up is just for
convenience. You can always go back to your Developer Console and upload a new
APK or modify the marketing information before or after publishing the applica‐
tion. Go ahead and click the Prepare Market Listing button. This will open a new
form wherein you can enter more detailed marketing information about your ap‐
plication as shown in Figure 8-6.

Uploading an Application | 123

Figure 8-6. Prepare Market Listing

You can complete this form and save drafts of works in progress as well.
4. Upload the APK.

Starting May 2013, Google Play allows developers to manage alpha and beta pro‐
grams for their applications. As a result, the application upload process has been
slightly modified. Now as part of the APK tab on the Google Play, you will see three
options, one each for Production, Alpha, and Beta programs. For alpha and beta
distributions, you can define a Google+ Circle of users who will be part of these
distribution channels. Once your Circle has been defined, you can upload and share
your application with alpha and beta testers.
Once you are satisfied with the alpha and beta testing of your application, you can
upload the application on the production channel for it to be published, as shown
in Figure 8-7.

124 | Chapter 8: Publishing Apps for Android

Figure 8-7. Uploading the application

5. Set the pricing model.
After uploading the APK for production, you will have to select the pricing model
for your application. In simple terms, you will specify whether you would like to
charge for the application and how much would you like to charge for it. You will
also select the countries in which you would like to distribute your application. See
Figure 8-8.

Uploading an Application | 125

Figure 8-8. Pricing and market selection

Once you have entered all the required details for your application, you will see a
Publish Now button, which will allow you to publish the application on Google
Play. The application should become immediately available (as in Figure 8-9), how‐
ever in some instances, we have seen that it can take anywhere between 10—30
minutes before an application shows up in Google Play apps.

Figure 8-9. Published application on Google Play

126 | Chapter 8: Publishing Apps for Android

Amazon App Store
To publish an Android application on the Amazon App Store, follow these steps:

1. Create a release build for the application.
2. Once the application has been thoroughly tested, digitally sign the application.
3. Publish the application.

In addition to the release activities set forth earlier in this chapter, you may want to:

1. Make sure the Manifest file uses the tag for supporting large screens, which is
<supports-screen android:largeScreens="true"/>.

2. Remove any dependence on Google-specific APIs and libraries not available on
Amazon devices. The most important being license verification library, maps, and
in-app billing.

3. Confirm that the application does not require any features not available on Kindle
Fire devices.

To publish Android applications on Amazon App Store, you need to join the Amazon
App Store Developer Program. The only way to publish applications for Kindle Fire is
through the Amazon App Store, so this is a requirement for developing for this device.
To sign up, you need a valid Amazon account. Then, go to the Amazon App Store
Developer Program website, click the Create an Account button, and fill in the relevant
information for your developer account. The Amazon App Store Developer Program
has a fee of $99 a year, which has currently been waived for the first year.

As part of the signup process, you are asked to provide information such as your name,
address, phone number, and company information. You then need to review and accept
the Developer License Agreement. Read the Developer License Agreement carefully. It
is nonexclusive, but it is more restrictive than other publishing options, such as the
Android Market. For example, you are required to provide technical and product sup‐
port to end users and respond to support requests from the Amazon App Store team in
a timely fashion.

Self-Signing and the Amazon App Store
The Amazon App Store prefers that you use a certificate provided by Amazon that is
tied to your Amazon developer account. In some cases, Amazon even allows users to
publish self-signed apps, however, you may have to contact Amazon for those privileges.
Either way, once you have the certificate with which you wish to sign the app, you can
sign the application using the procedure described earlier in this chapter.

Amazon App Store | 127

https://developer.amazon.com/welcome.html
https://developer.amazon.com/welcome.html

Amazon App Store Sign Up Process
Amazon developer registration beings with signing into your Amazon account, as
shown in Figure 8-10. Although, you can also use your existing Amazon account, it is
always a good practice to set up a new account for this purpose in the long run.

Figure 8-10. Sign into an Amazon account

On the sign-up screen (shown in Figure 8-11) you will be asked to select your Amazon
username, email address, and password.

Figure 8-11. The sign-up screen

128 | Chapter 8: Publishing Apps for Android

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Once you successfully sign up and sign in with an Amazon account, you will be redi‐
rected to the developer registration page, as shown in Figure 8-12. Here you are required
to fill in your contact details, which can then be used by Amazon for publishing pur‐
poses.

Figure 8-12. Filling in your contact details

Not all details will be shown to the users. Some of these contact de‐
tails are used for customer support and for Amazon to reach out to
developers in case of a need or urgency.

Amazon App Store Sign Up Process | 129

Once you have provided the contact information, you will be redirected to the Mobile
Application Distribution Agreement, shown in Figure 8-13, which you must accept to
publish applications through this channel. Please go through the agreement, if you agree
with the terms, accept the agreement to move onto the next phase of registration.

Figure 8-13. Amazon Mobile App Distribution Agreement

On the Payments screen, shown in Figure 8-14, you can specify whether you would like
to charge for your applications on the Amazon App Store. Based on your answer, you
may have to fill in the Tax Identity questionnaire shown in Figure 8-15. You can change
this option later on at any time.

130 | Chapter 8: Publishing Apps for Android

Figure 8-14. Payment profile

Figure 8-15. Tax Identity questionnaire

Amazon App Store Sign Up Process | 131

As in the case of Google Play, Amazon requires your tax-related information to furnish
payments related to application sales. You may choose to fill this form later by selecting
the Ask Me Later option. Please note that this information has to be provided before
you can publish your applications that are subject to monetization.

At this stage, you can now upload your application packages for review and eventual
publication. Figure 8-16 shows the Developer Dashboard.

Figure 8-16. Developer Dashboard

132 | Chapter 8: Publishing Apps for Android

Uploading an Application
Uploading the application to the Amazon App Store is quite straightforward, and is
similar in principle to the process you will follow on Google Play. Through the help of
following figure, we are capturing at a very high level the process involved in uploading
and publishing an application through Amazon App Store.

To upload a new application, tap on the Add a New App button in the My Apps section,
shown in Figure 8-17. This will initiate the application submission workflow, wherein
you can provide general information, pricing, and marketing material for the applica‐
tion.

Figure 8-17. Add a new application

The first form to be displayed as part of the workflow is the General Description form
(see Figure 8-18). On this form you will enter the public name of the application, your
personal tracking number, the category of app, and customer support information,
among other things.

Uploading an Application | 133

Figure 8-18. General information about the application

After you complete the General Description form, you will be taken to the Availability
and Pricing page where you can select the markets and pricing model for your
application; see Figure 8-19. You can change this information any time, even after pub‐
lishing the application. However, please note that even if you change the price plans,
users who have downloaded your application will retain access to updates without pay‐
ing for them.

134 | Chapter 8: Publishing Apps for Android

Figure 8-19. Availability and Pricing

On the next page, you will be asked to enter some marketing text describing your ap‐
plication; see Figure 8-20. Note that on this page, you can add multiple translations of
the marketing text. If you wish to distribute your application in multiple geographies
then, it is important that you publish your marketing content in multiple languages as
to allow users to discover apps in their native language. In our experience, this greatly
enhances the application uptake.

Uploading an Application | 135

Figure 8-20. Marketing content description

A single picture is equivalent to a thousand words, and this phrase holds equally well
for your marketing material. The Amazon App Store allows developers to add screen‐
shots of their application to be displayed to the users before the purchase, as shown in
Figure 8-21. As in the case of text, it is always a good practice to make sure that you
upload the key screenshots of your app. You may also localize these screenshots to ensure
that users can see the application in their native language. Because users often make the
decision to purchase an app by relying on what they see as opposed to what they read,
you are advised to give special attention to this form.

136 | Chapter 8: Publishing Apps for Android

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

Figure 8-21. Multimedia content upload

Content ratings are an important part of application meta data. They allow the App
Store to filter content based on user profiles. As part of each application upload process,
you are expected to provide suggested content ratings for your application; see
Figure 8-22. It is important to note, that as part of the application review process, Am‐
azon will ensure that your application does not violate the content guidelines and that
it matches the content rating entered by you. If the application is found to violate the
content rating, then they can reject the application from being published.

Uploading an Application | 137

Figure 8-22. Select content rating

The final step of the application submission process is to upload the Android package
for you application, as shown in Figure 8-23. On this page, you can also select the devices
for which you would like to publish the apps. On this page, you can also specify any
special test instructions that you may want to pass onto the reviewers at Amazon. Once
you have uploaded the binary and filled in the correct information, the Submit App
button at the bottom of the page will be enabled. The application can be then submitted
for review by clicking on this button.

138 | Chapter 8: Publishing Apps for Android

Figure 8-23. Upload the application package

Uploading an Application | 139

If the application is rejected during the review process, you will be
given instructions describing the reasons for rejection. Once you have
taken care of the Amazon content guidelines, you can resubmit the
application using the process described earlier except that instead of
creating a new application, you will modify and submit the existing
one from your dashboard.

Understanding the Application Approval Process
Upon submission, the application will be reviewed and tested by the Amazon App Store
developer team to ensure that it follows the guidelines set forth in the developer agree‐
ment. Once reviewed, it will either be Approved, Rejected, or Pending. For Pending and
Rejected statuses, you will receive an email with an explanation.

After your application successfully makes it through the review process, it is published.
Once it’s published, the status of the application changes to Live. If at some point in the
future the application is removed from the Amazon App Store, its status is marked as
Suppressed.

140 | Chapter 8: Publishing Apps for Android

About the Authors
Nizamettin Gok (aka Nizam) has more than 15 years of experience in client-side ap‐
plications. He has been involved in designing, developing, and managing large-scale
web applications for many years. He has since translated his experiences into working
in the mobile application space during his time in Japan.

Nizam believes that the invention of Ajax technology was a turning point for client-side
applications. His focus on using JavaScript in mobile web applications led him to build‐
ing hybrid applications for Android. He is very passionate about creating excellent user
experiences.

He has a personal interest in web application security; in his free time he currently
maintains Geoxies (a site that helps prevent fraudulent activities). Nizam has also man‐
aged small- to large-scale and offshore teams successfully. He is currently working at
Microsoft as a Senior Software Development Engineer for the Skype Android platform.

Nitin Khanna is a lead engineer for Android at Skype with extensive experience in
mobile application development for Android, iOS, Symbian, and BREW. In his free
time, Nitin contributes to many open source projects. He also has experience in OS
middleware and protocol stack development.

Colophon
The animal on the cover of Building Hybrid Android Apps with Java and JavaScript is
a pacuma toadfish (Batrachoides surinamensis). This species of toadfish can be found
in the Caribbean Sea and the Atlantic Ocean, with habitats stretching along the coast
of Central and South America from Honduras to Brazil. The pacuma toadfish is the
largest species of toadfish, reaching up to 22 inches in length. They generally stay fairly
inactive, disguising themselves in the sand or mud of shallow warm water.

Despite being harvested as a commercial food source and inhabiting environments that
undergo large-scale fluctuations, this species has proven tolerant and resilient to chang‐
ing environment conditions, spawning from 400 to 500 eggs at a time.

The cover image is from a loose plate, source unknown. The cover font is Adobe ITC
Garamond. The text font is Adobe Minion Pro; the heading font is Adobe Myriad Con‐
densed; and the code font is Dalton Maag’s Ubuntu Mono.

D
ow

n
lo

a
d
 f
ro

m
 W

o
w

!
e
B
o
o
k

<
w

w
w

.w
o
w

e
b
o
o
k.

co
m

>

http://www.geoxies.com

	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Nizamettin Gok
	Nitin Khanna
	About the Technical Reviewer

	Chapter 1. What Is Android?
	Android Applications
	What Is a Hybrid Application?
	Categories of Applications
	Key Characteristics of Hybrid Apps
	Why Developing Hybrid Apps Makes Sense
	Hybrid Application Architecture
	How Do Hybrid Apps Work on the Android Platform?

	Chapter 2. Setting Up Your Android Development Environment
	Installing Eclipse on Mac OS X
	Installing Android Development Tools
	Creating Your First Hybrid Android Project Using Eclipse IDE
	Android Development Using the Command Line
	Setting PATH Environment Variables

	What Is ADB (Android Debug Bridge)?
	Connecting an Android Device to the Development Host
	Connecting to an Android Device Over WiFi

	Using Apache Ant to Automate Building Android Applications
	Understanding the Android Build Process
	Resource Precompilation
	Service Interface Precompilation
	Java Compilation
	DEX Generation
	Resource Packaging
	Creation of the APK File
	Alignment

	CSS Preprocessors
	Installing SASS
	Integrating SASS into the Android Command-Line Build System

	JSLint Framework and Strict Coding Conventions
	Process HTML Templates
	Minifying CSS and JavaScript Files Using YUI Compressor
	Using Safari and Chrome Browsers for Faster JavaScript Debugging and UI Changes

	Chapter 3. Android Fundamentals
	Android Application Architecture
	Key Android Components
	Dalvik Virtual Machine (DVM)
	View
	Activity
	Fragment
	Intent
	Services
	Content Providers
	Broadcast Receiver

	Security Model in Android
	Resources
	String Resources
	Layout Resources

	Compiled and Uncompiled Android Resources
	Assets
	Structure of an Android App
	Application Manifest
	Application Package Name
	Application

	Activity
	Intents
	Intent Resolution
	Intent Filter
	Services
	Broadcast Receiver
	Specifying Compatible Device Configuration
	Declaring Needed Device Features
	Permissions
	SDK Version
	Hands-on Coding: Hybrid Hello World! Application

	Chapter 4. WebView, WebKit, and WebSettings
	The WebView as a Web Browser
	So What Is WebKit?
	Requesting Internet Permission from Android Manifest
	Instantiating and Accessing the WebView Control
	Loading a Web Page
	Loading HTML into WebView
	WebViewClient
	WebChromeClient

	Loading Local Files into the WebView
	Load Flash Files into the WebView
	Reading Files from the res/raw Directory
	Triggering JavaScript Functions from the Java Layer
	Opening a WebView in Fullscreen Mode
	Enabling a Resize Event in JavaScript While Your Application Is Fullscreen
	Binding Java Objects to WebView Using the addJavaScriptInterface() Method
	@JavaScriptInterface Annotations

	Security Considerations for Hybrid Applications
	HttpOnly Cookies and the Secure Flag
	Domain Whitelisting
	Configuring WebView Settings with WebSettings
	Preventing Local Files from Being Loaded in the WebView
	Enabling JavaScript
	Setting Default Font Size
	Zoom Controls
	Hardware Acceleration

	Chapter 5. Inter-workings of the JavaScript and Java Layers
	Architecture of a Hybrid Application
	Calling Java Methods from JavaScript
	Synchronous APIs
	Asynchronous APIs
	Calling JavaScript Methods from Java
	Routing Data to the Correct JavaScript Receiver
	Deferred Object Pattern
	Register Success Callback Using deferred.done()
	Register Failure Callback Using deferred.fail()
	Register Progress Callback Using deferred.progress()
	Simpler Callback registration with .then()
	Synchronizing Multiple Asynchronous Events with $.when()
	Resolve a Deferred Object
	Reject a Deferred Object
	Use of Promise
	Use of deferred.progress()
	Cache Manager for Handling Multiple Deferred Objects
	Thread Safety

	Chapter 6. HTML Architecture for Hybrid Applications
	Architecture of a Web Application
	Single Page Applications (SPA)
	Key Design Considerations for Single Page Applications
	The Libraries and Frameworks for Your Hybrid Apps
	Backbone.js for MVC Framework
	Underscore.js for Utility Support
	iScroll.js for scrolling
	iScroll Caveats
	jQuery.js for JavaScript application
	Preload Images Within the CSS Files

	CSS Reset Avoids Browser Inconsistencies
	Your Home index.html
	Viewport Meta Tag
	Viewport Width
	Viewport Scaling with the Content Attribute
	Responsive Design and Media Queries
	EM or Percent (%) unit for scalable interface
	CSS3 Introduces rem Unit
	Opacity or RGBA: What Is the Difference?
	Event Pooling

	Chapter 7. CSS, DOM, and JavaScript: Optimization Tips and Useful Snippets
	Chapter 8. Publishing Apps for Android
	Digitally Signing Applications
	Protecting Your Application with ProGuard
	Google Play
	Registering as a Publisher
	Developer Console
	Uploading an Application
	Amazon App Store
	Self-Signing and the Amazon App Store
	Amazon App Store Sign Up Process
	Uploading an Application
	Understanding the Application Approval Process

	About the Authors

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

